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Chapter 1

Introduction

1.1 General background

The importance of suspensions for industrial applications has generated a long stand-
ing interest in understanding their flow behaviour, in particular transport properties.
Suspensions are used for transportation of large quantities of solid particulate mate-
rials, for example sand slurries, drilling fluids in the oil industry and pulp handling in
paper manufacturing. Furthermore, suspensions are of importance in manufacturing
processes of many products, like ceramics, paints and food. In the past, applica-
tions rested heavily on engineering experience to predict the flow behaviour. For
increasingly complex systems it is advantageous to understand the properties on a
more fundamental level in order to effectively control suspension properties during
the process.

Research on hard sphere suspensions has long concentrated on macroscopic rhe-
ological quantities. Viscosity, yield stresses and normal forces have been the key
issues. On the particle level these quantities can be related to forces, like hydro-
dynamic, Brownian and interparticle forces. To find relations between these micro-
scopic quantities and the macroscopic suspension rheology is the challenge for the
rheologist.

On the particle level one can also analyze the particle motion instead of forces.
For colloidal suspensions Brownian diffusion then comes to the surface as an im-
portant transport property. With the diffusion a Brownian force is associated, which
can be used to calculate particle motion. These thermal effects decrease strongly
with increasing particle size and for large, non-colloidal particles (roughly> 10µm)
Brownian diffusion is negligible. It was found however (Ecksteinet al., 1977) that
another kind of diffusion becomes more and more important for increasing particle
size. The mechanism is flow-induced, i.e. after cessation of flow the diffusive process
stops instantly, and has been named shear-induced or hydrodynamic diffusion.

The nature of the phenomenon is different from the more familiar concepts of
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Brownian diffusion, which is caused by thermal fluctuations, and turbulent diffusion,
which is driven by inertial effects and therefore only of importance at high Reynolds
numbers. Shear-induced diffusion of hard spheres is the result of the spatial hindrance
that particles experience in a concentrated suspension when it is macroscopically
forced to flow. Its origin is depicted in figure 1.1.

Figure 1.1: Schematic picture of a concentrated suspension under shear; the veloc-
ity profile of the macroscopic shear flow is drawn on the left.

The figure represents a concentrated suspension in simple shear flow. On the
left, the macroscopic flow field is drawn. Individual particles tend to follow the flow,
but on their way they encounter slower or faster particles on neighbouring stream-
lines with different velocities. The presence of these neighbours prevents the marked
particle from moving along the original streamline. Instead, the tracer particle will
exhibit a fluctuating motion when it tumbles around its neighbors. Thus also the
velocities of these neighbours have a fluctuating component. When viewed on the
proper timescale, the displacements of individual particles have been shown to be of
diffusive nature. The diffusion is usually referred to as shear-induced self-diffusion.
Note that inertial or thermal effects do not enter this picture. The presence of many
neighbours in concentrated suspensions is sufficient. In principle, the velocity fluctu-
ations should be deterministic if the particle configuration is known. As a result of the
complex nature of the suspension hydrodynamics it can be described as a diffusive
process.

Simple scaling arguments suffice to explain why shear-induced diffusion is only
notable for non-colloidal particles. If the particle motion is diffusive, the following
relation applies:

h∆x∆xi= 2 D ∆t (1.1)

where∆x is the particle displacement vector,∆t the time step andD the associated
diffusion tensor. A tensor is needed since the motion of particles is anisotropic due
to the anisotropy of shear flow.D has the dimension

�
length2=time

�
. The only rel-

evant length scale in a concentrated suspension of hard spheres is the particle size
(radiusa). The only other length scale could be formed by the dimensions of the
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flow geometry (gap width), but a fundamental transport property like shear-induced
diffusion should be geometry independent. Considering the shear-induced character
of the process, the relevant timescale must beγ̇�1. Using these scaling arguments,
the diffusion tensor can be made dimensionless in the following way:

D = γ̇ a2 D̂ (1.2)

where the dimensionless quantitŷD can still depend on dimensionless parameters
like the particle volume fractionφ. Combining the two equations shows that the
dimensionless timescale of shear-induced diffusion is the strainγ̇∆t:

h∆x∆xi= 2 a2 D̂ γ̇∆t (1.3)

Shear-induced diffusion thus grows with the square of the particle size. Since Brow-
nian diffusion decreases with particle size, two regimes can be specified: the col-
loidal regime where Brownian effects dominate and the non-colloidal regime where
shear-induced diffusion prevails. The border between the two is not very sharp, but a
particle diameter of roughly 10µm is often used to mark the point where Brownian
motion becomes insignificant.

Historically, shear-induced diffusion has been studied on two different levels:
self-diffusion of individual particles and the collective process of gradient diffusion,
which can lead to net migration of particles on the macroscopic level. In this thesis
I concentrate on self-diffusion. By studying the results of the hydrodynamic inter-
actions on the particle level, I have aimed for improving the understanding of the
microscopic processes behind shear-induced diffusion.

1.2 Previous work

This section contains an overview of the available literature in the field. Although my
thesis is focused on self-diffusion, research on gradient diffusion is included in order
to construct a complete picture of current knowledge of shear-induced diffusion.

1.2.1 Experiments

Direct experimental observations of shear-induced diffusion date back to Eckstein
et al. (1977) who studied the fluctuating motion of individual tracer particles. In
concentrated suspensions the authors measured the time and radial position of a ra-
dioactive tracer particles after each full rotation in the Couette flow. This information
suffices for the calculation of self-diffusion in the velocity gradient direction.

In the second half of the 1980’s shear-induced diffusion received renewed atten-
tion under the impulses of Acrivos and coworkers, who observed a steady decrease of
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the viscosity of concentrated suspensions during measurements in a Couette viscome-
ter. Later, they were able to explain this effect in terms of shear-induced migration of
particles from the annular Couette gap into the stagnant fluid reservoir at the bottom
of the geometry, where the shear rate is considerably lower (Gadala-Maria & Acrivos,
1980; Leighton & Acrivos, 1987b). Values for the diffusion coefficient could be cal-
culated in an indirect way by interpreting the viscosity data with a model for the vis-
cosity as a function of particle volume fraction. In our own research group Wolthers
et al. (1996) discovered that even for colloidal suspensions shear-induced diffusion
can be of importance. In their depletion flocculated suspensions the colloidal primary
particles (diameter 76 nm) formed large aggregates of non-colloidal dimensions and
these aggregates exhibited the same migratory effects as non-colloidal particles dur-
ing rheological experiments.

The same mechanism was also found to be responsible for particles fluxes against
gravity in sedimented layers, referred to as viscous resuspension. Since visual ob-
servation of resuspension is relatively simple, experiments have been performed in
different flow geometries: Couette (Leighton & Acrivos, 1986; Acrivoset al., 1993),
parallel plate (Chapman & Leighton, 1991) and plane channel flow (Schaflingeret al.,
1990, 1995). The main disadvantage of the experimental technique is that the motion
of diffusing particles can not be measured, only macroscopic concentration profiles
are detected. Again, viscosity model must be used to relate resuspension heights to
diffusion coefficients. An elegant addition to resuspension experiments was carried
out by Tripathi & Acrivos (1999), who showed that in a mixture of neutrally buoyant
and heavy particles, the latter exhibit enhanced resuspension due to the presence of
the neutrally buoyant particles that increased the frequency of interactions.

Another approach has been to directly measure concentration profiles by means
of NMR. This non-invasive technique enables direct monitoring of the evolution of
particle distributions. For large particles (600µm) even individual particles can be
located. The technique was developed by Abbottet al. (1991) (see also Graham
et al., 1991) and originally applied to wide-gap Couette flow. Later on the method
has also been used to study parallel-plate (Chowet al., 1994) and pipe flow (Hampton
et al., 1997). Although the technique has provided interesting images of the particle
distribution and thus revealed many intriguing phenomena, the microscopic processes
behind the diffusive process could not be investigated due to the low frequency of
image acquisition, typically 10 minutes per NMR image.

To obtain information about the microscopic mechanism of shear-induced diffu-
sion it is preferable to directly measure the motion of individual particles. Then infor-
mation aboutself-diffusionis generated, which must be strongly related to the collec-
tive gradient diffusionas determined in the experiments described above. The tech-
nique of the already mentioned self-diffusion measurements of Ecksteinet al. (1977)
was improved successively by Leighton & Acrivos (1987a) and Phan & Leighton
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(1993), who visually observed opaque tracers in a transparent suspension of den-
sity and refractive index matched particles and fluid. The most recent measurements
included results for diffusion in the vorticity direction by monitoring the axial posi-
tion. The experimental technique has proven extremely valuable for understanding
the scaling behaviour of shear-induced diffusion. The main limitation is that the
timescale of the observations is governed by the Couette flow and can not be con-
trolled externally for any given piece of equipment. The passage time of the tracer
particle depends on its radial position: near the stationary outer cylinder particles
have a lower velocity than near the rotating inner cylinder. As a result, the experi-
ments were all performed for relatively large strain values (γ̇∆t �O(10), as explained
in section 1.1 this is the relevant timescale). In order to collect detailed information
about the nature of microscopic interaction it would be highly desirable to be able to
monitor particles over a wide range of strain valuesγ̇ ∆t. This thesis addresses the
problem by developing a novel technique, which includes the flexibility of timescales.

For sedimentation of non-colloidal suspensions interesting experimental work
has been done by Nicolai and co-workers (Nicolaiet al., 1995; Nicolai & Guazelli,
1995). They visualized the paths of individual tracer particles in transparent suspen-
sions by means of a CCD camera. The particle paths were then used to extract in-
formation about the average sedimentation velocity and about velocity fluctuations,
which are the result of hydrodynamic interactions. The diffusion coefficients from
these experiments differ from the other self-diffusion experiments, because of the
nature of the flow. First of all, the in sedimentation the shear rate is ill-defined. Sec-
ondly, for increasing volume fractions self-diffusion under sedimentation strongly
decreases, because particles are trapped by their neighbours. In steady shear exper-
iments, on the other hand, the macroscopic flow forces relative motion of particles
and the scaling at high volume fractions is less obvious, as will be shown in the rest
of this thesis (e.g. figure 2.1).

1.2.2 Theory

Theoretical work on shear-induced migration has been strongly focused on gradient
diffusion. One of the reasons is that most experimental studies have been directed at
measuring this quantity as well, as was shown in section 1.2.1, so that data is avail-
able for comparison. Although our own work is concentrated on self-diffusion, an
overview of migration theories is presented first, to show the current state of the-
ory. In the remainder of the section the theoretical work on self-diffusion will be
addressed.

In order to interpret their experimental results Leighton & Acrivos (1987b) tried
to gain physical insight into the mechanisms that cause shear-induced diffusion. Their
analysis concentrates on gradient diffusion which was observed to induce changes in
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viscosity during steady shear measurements in a Couette rheometer. The model they
proposed is based on a mechanistic picture: irreversible particle interactions in con-
centrated suspensions give rise to displacements both in the vorticity direction –i.e.
normal to the plane of shear– and in the velocity gradient direction. Simple consider-
ations about the nature of such interactions, e.g. frequency and size of displacements,
lead to correct scaling predictions of the evolution of particle distributions in inhomo-
geneous shear flow, like Couette and channel flow. An additional term of diffusion
is introduced in relation to variations in suspension viscosity with volume fraction.
The idea is that during a ”collision” the particle displacements will be largest towards
the regions with lowest suspension viscosity. Qualitatively the model of Leighton &
Acrivos (1987b) predicts net particle migration towards regions of low shear rate,
because such an inhomogeneous particle distribution balances the migratory fluxes.

These concepts were worked out by Phillipset al. (1992) who captured the ideas
in an evolution equation for the particle concentrationφ, based on balancing the var-
ious diffusive fluxes. The model, often referred to as ”diffusive flux model”, was
solved numerically and the free model parameters were determined by comparing
the calculations with particle distributions that were determined experimentally by
means of NMR (Abbottet al., 1991). Good agreement was found between model
predictions and experiments both for transient and steady state flow in wide gap Cou-
ette and Poiseuille flow.

The main shortcoming of the diffusive flux model is that for regions where the
shear ratėγ = 0 the particle concentration at the center will by definition increase
to the maximum packing limit. In Poiseuille flow this leads to a predicted cusp in
particle concentration at the center line, sinceγ̇ = 0 at this position. However, real
particles with finite size will in general be so large that they experience a locally
averaged shear ratėγave 6= 0. Averaging over distances comparable to the particle
diameter could provide a physical solution for this model artefact. In pipe flow ex-
periments of Hamptonet al. (1997) it was indeed found that the quality of the model
predictions at the center of the pipe strongly depends on the ratio of particle to pipe
radius,a=R. For smalla=R the continuum model of Phillipset al. (1992) provides
more accurate predictions than for large values ofa=R, when the particle size is sig-
nificant compared to the dimensions of the flow geometry and averaging of the shear
rate over at least the particle dimensions seems appropriate.

In other geometries the diffusive flux model also fails to accurately predict ex-
perimental findings, in particular for cone-plate and parallel plate torsional flow. Ac-
cording to the model particles will always migrate towards regions of lowest shear
rate. Consequently, the steady state solution for the particle concentration is homoge-
neous in cone-plate geometry (constantγ̇) and inhomogeneous for parallel plate flow,
with migration towards the axis of rotation. However, experimental results suggest
that in plate-plate geometry hardly any migration is observed, while slight outward
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migration is found in truncated cone-plate flow (Chapman, 1990; Chowet al., 1994).
To resolve the discrepancy, Krishnanet al. (1996) have suggested modifications of
the diffusive flux model by including curvature effects. The idea behind the adap-
tations is that two ”colliding” particles will experience a joint outward displacement
due to curvature of the velocity field.

A different approach to the problem was initiated by Nott & Brady (1994) with
the so-called ”suspension balance model”, which was recently extended by Morris
& Boulay (1999). The essential feature in their work is that migration is related
to rheological properties of the suspension, including normal stresses and anisotropy
which are neglected in the mechanistic diffusive flux model. Especially in curvilinear
flows, like cone-plate and parallel plate, normal stress differences come into play. It
is demonstrated that all experimental results listed above for various flow geometries
can be described successfully –at least qualitatively– with a single set of parameters.
For quantitative predictions, accurate rheological data is needed, which is non-trivial
for non-colloidal suspensions since normal stress differences are small and difficult
to measure. An extensive experimental study of Zarragaet al. (2000) has shown very
recently that the predictions of Morris & Boulay (1999) are in good agreement with
rheological data for suspensions of non-colloidal spherical particles.

The studies mentioned above all address the problem of gradient diffusion. Theo-
retical work on self-diffusion in the concentrated regime is scarce. For dilute suspen-
sion where the interactions between particles essentially only involve two (or three)
particles, several researchers have studied the nature of hydrodynamic interactions.
In infinite Stokes flow a two-particle collision is symmetrical and no displacements
are observed after the interaction is completed. Asymmetry can be introduced in var-
ious ways: Da Cunha & Hinch (1996) have used the idea of particle roughness to
force particles to stay separated at a certain minimum distance during the interaction,
Wang et al. (1996) calculate the influence of a third particle as symmetry breaker
and Pesche (1998) investigated the effect of a short-range repulsive force. All studies
have shown that breaking the symmetry leads to displacements in the velocity gra-
dient and vorticity direction, thus explaining the presence ofD̂yy andD̂zz. However,
the anisotropyD̂yy=D̂zz in these dilute calculations is far larger (O(10)) than in exper-
iments (ca. 2). Apparently additional mechanisms come into play for concentrated
suspensions.

Brady & Morris (1997) have tried to extrapolate a scaling theory, which is valid
for dilute systems, to describe shear-induced self-diffusion the concentrated regime.
Although the theory predicts the correct level of anisotropy, it fails in describing
the dependency of diffusion on volume fraction. The theory predicts a monotonous
growth, while experiments (Phan & Leighton, 1993) have shown that at high concen-
trations diffusion levels off. In spite of this discrepancy, until now the work of Brady
& Morris (1997) is the most promising theoretical attempt to explain self-diffusion.
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More detailed studies are needed, but the efforts would be greatly supported by col-
lecting more reliable experimental information to create an unambiguous picture of
the dependencies of self-diffusion on important physical quantities like volume frac-
tion.

1.2.3 Numerical work

In recent years computer techniques have improved to the level where computations
on complicated systems are within reach. Although various research groups have
worked in the field, numerical work on concentrated suspensions is strongly asso-
ciated with the Stokesian Dynamics technique that was developed by Brady and co-
workers (e.g. Bossis & Brady, 1987; Phunget al., 1996). Originally, the computations
were focused on colloidal systems, where Brownian diffusion plays an important
role. Only recently, the numerical work has extended to the non-colloidal regime,
where shear-induced diffusion becomes important. Non-colloidal calculations re-
quire shorter time steps and therefore computational costs are high and the system
size is limited. For most published work (Yurkovetsky,1998; Foss & Brady, 1999;
Marchioro & Acrivos, 2000) systems of only 27 particles were used with periodic
boundary conditions. Since the system size is small compared to any realistic sys-
tem, the results have to be treated with caution when comparing them to experimental
data. Moreover, the computations deal with perfectly smooth spheres, whereas ex-
perimental systems will always have finite roughness and non-sphericity.

In spite of these marginal notes, Stokesian Dynamics computations provide coef-
ficients of self-diffusion that are slightly smaller than experimental results, but of the
same order of magnitude. Anisotropy is also comparable withD̂yy=D̂zz� 2. The main
discrepancy is the shape of the diffusion curve, when plotted against volume fraction
φ. Like the theoretical work of Brady & Morris (1997), numerical results exhibit
a monotonous growth. Recent work suggests the existence of plateau values at high
volume fractions forD̂yy (Foss & Brady, 1999; Marchioro & Acrivos, 2000), but both
studies distinctly show that̂Dzz increases withφ. All in all, numerical work has made
significant progress in studying shear-induced diffusion in concentrated suspensions,
but the current discrepancies with experiments must be addressed.

1.3 Thesis outline

From the overview in the preceding sections it becomes clear that many fundamental
questions about shear-induced diffusion remain unanswered. In this thesis new exper-
imental work on self-diffusion will be presented with the aim to increase the under-
standing of the underlying processes. Thus I hope to contribute to the development of
a framework of well-defined experimental results, which can provide the fundament
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for understanding the microscopic processes that give rise to shear-induced diffusion.
The backbone of my work is formed by a novel technique that has been developed to
collect more detailed information on the particle motion.

The thesis is organized as follows. The principles of the measuring technique
are described in chapter 2, which also deals with the experimental realization and the
first results for the diffusion coefficients in the velocity gradient (D̂yy) and vorticity
direction (D̂zz), obtained in a Couette geometry. The technique is based on visual
analysis of the motion of a large ensemble of coloured tracer particles in an otherwise
refractive index matched suspension. The main advantage over other methods is that
the particle motion can be monitored over a wide range of well-controlled strain
values. It it also shown that the method is applicable for determining fluid diffusivity
by introducing tiny tracer particles into a suspension of much larger particles.

The experiments of chapter 2 were not carried out under ideal conditions. The
accessible range of timescales was limited by the geometry with a rotating inner and
stagnant outer cylinder, because the tracer particles are shifted out of the observation
window. For comparison with literature data it is preferable to increase the range of
parameters. Therefore a new set-up has been designed with a counter-rotating flow
geometry. Experiments in the sophisticated geometry are reported in chapter 3.

In chapter 4 the results of the diffusion measurements are placed in a broader
perspective by comparing the results with particle trajectories, which were deter-
mined by means of particle tracking, and rheological measurements. The combined
experiments reveal a complete and coherent picture of the relevant timescales and
microstructure in concentrated suspensions under shear.

The experimental technique was developed further to extract the full diffusion
tensor, including the diffusivity in the velocity direction,̂Dxx, and the off-diagonal
term, D̂xy. These diffusion coefficients have never been determined experimentally
before, only limited numerical results are available. The advanced data analysis is
described in detail in chapter 5.

The final chapter is devoted to some theoretical considerations. In an attempt
to gain physical insight a simple collision model has been developed, that captures
a number of the most important experimental characteristics of shear-induced self-
diffusion.

Finally, it should be noted that most chapters are self-contained and have been
(or will be) published as papers in scientific journals. Only minor changes –mostly
typographic– have been made to turn the thesis into a coherent structure.
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Chapter 2

Novel Technique for Measuring Shear-Induced
Tracer-Diffusion in Concentrated Suspensions�

Abstract

The shear-induced particle self-diffusivity in a concentrated suspension (20% - 50%
solids volume fraction) of non-colloidal spheres (90µm average diameter) was mea-
sured using a new correlation technique. This method is based on the correlation
between the positions of tracer particles in successive images and can be used to
determine the self-diffusivity in non-colloidal suspensions for different timescales.
These self-diffusivities were measured in the velocity gradient and vorticity direc-
tions in a narrow gap Couette device for values of the strainγ̇∆t ranging from 0.05
to 0.5, wherėγ is the applied shear rate and∆t is the correlation time. In both di-
rections, the diffusive displacements scaled linearly withγ̇∆t over the range given
above and the corresponding diffusivities were found to be in good agreement with
the experimental results of Leighton & Acrivos (1987a) and of Phan & Leighton
(1993), even though these earlier studies were performed at much larger values of
γ̇∆t. The self-diffusivity in the velocity gradient direction was found to be about
1.7 times larger than in the vorticity direction. The technique was also used to
determine the shear-induced fluid tracer diffusivity by measuring the mean square
displacement of 31:5µm diameter tracer particles dispersed in concentrated suspen-
sions (30% - 50% solids volume fraction) of non-colloidal spheres (325µm average
diameter). These fluid diffusivities were found to be 0.7 times the corresponding
particle diffusivities when both were scaled withγ̇a2 (2a = 325µm).

�This chapter was published as’The Measurement of the Shear Induced Particle and Fluid Tracer-
Diffusivities in Concentrated Suspensions by a Novel Method, V. Breedveld, D. van den Ende, A. Tri-
pathi, A. Acrivos, J. Fluid Mech.375, pp. 297-318 (1998)’
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2.1 Introduction

The self-diffusion of tracer particles in non-colloidal, as well as non-Brownian, sus-
pensions has attracted a great deal of attention in recent years. Even at low Reynolds
numbers, where inertial effects play a negligible role, particles in such suspensions
exhibit diffusion-like motions due to hydrodynamic interactions with their neigh-
bours whose positions have a random component. These interparticle interactions
induce a net particle migration in the presence of inhomogeneities in the bulk shear
rate or in the particle concentration.

In order to understand this type of self-diffusivity, consider a neutrally buoyant
test sphere in a viscous suspension of otherwise identical spheres. When the sus-
pension is subjected to an external shear flow, the test particle interacts with the
other particles surrounding it and, consequently, experiences a series of displace-
ments away from its original streamline. Such displacements, when taken together,
will have zero mean but a finite mean square displacement which can be characterized
by a shear-induced coefficient of self-diffusion. Since the rate of such interactions is
proportional to the shear rateγ̇, and the length scale of each displacement is compa-
rable to the particle radiusa, the diffusion coefficient has a dimensional scalingγ̇ a2

(Ecksteinet al., 1977). It is important to note that the coefficient of self-diffusion
associated with this mechanism is quite different from the shear-induced gradient
diffusivity (Leighton & Acrivos, 1987b), the latter being the coefficient in the linear
relation between the particle flux resulting a non-uniformity in the particle concen-
tration and the concentration gradient. According to the arguments by Leighton &
Acrivos (1987b), such a flux down a concentration gradient arises because a given
particle in a sheared suspension experiences a greater number of interactions from
the high concentration side than from the other. On the other hand, the mixing of
marked spheres in a suspension of uniform concentration is entirely a self-diffusion
process.

Although the latter is one of the most basic transport processes occurring in
sheared suspensions, only a few theoretical and experimental studies of the self-
diffusivity have been reported to-date. These include the experimental measure-
ments of the shear-induced self-diffusivity of non-Brownian particles by Eckstein
et al. (1977), Leighton & Acrivos (1987a) and Phan & Leighton (1993), the compu-
tations via Stokesian Dynamics simulations by Bossis & Brady (1987), Phunget al.
(1996), Phung (1993) and the theoretical work by Brady & Morris (1997). The results
of all these studies are summarized in figure 2.1 (Brady, 1997) where the dimension-
less self-diffusivities along the velocity gradient and vorticity directions are plotted
as a function of the particle concentrationφ. Clearly, owing to the large scatter in
the experimental observations it is difficult to compare directly the experimental and
computational results. In addition, in order to understand the nature of the micro-
scopic interactions between the particles, measurements of the self-diffusivity over
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Figure 2.1: Data for the shear-induced self-diffusivity in a simple shear flow col-
lected by Brady (1997) and plotted against the particle volume fraction in the sus-
pension.(a) The self-diffusivity along the direction of shear;(b) the self-diffusivity
along the vorticity axis. (Adapted with the permission of Professor J.F. Brady)
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a wide range of values of the strainγ̇∆t, where∆t is the time step over which the
particle displacement is observed, would be highly desirable. To our knowledge such
measurements have not been attempted thus far.

Similarly, the self-diffusivity of a fluid tracer in non-colloidal concentrated sus-
pensions has not been measured thus far in spite of its importance in many industrial
and clinical processes. For example, a great deal of literature is available concerning
liquid phase mass transport in red blood cell suspensions and on the gas and heat
transport in suspensions of particles. Zidney & Colton (1988) list about 50 publica-
tions on this topic. Although considerable evidence exists that both heat and mass
transport in concentrated suspensions can be substantially augmented in shear flow,
existing models are not completely adequate for predicting the experimental observa-
tions. We believe that the results of this study can be used to estimate the importance
of augmented solute transport in the flow of concentrated suspensions, and also that
they can provide a basis for a more detailed experimental and theoretical study of this
phenomenon.

In this chapter we present a new method for measuring the self-diffusion coeffi-
cient in concentrated suspensions of non-colloidal and non-Brownian particles. This
technique is based on the application of spatial correlation procedures to consecu-
tive images of tracer particles in a fixed imaging volume. In the next section, the
general idea of the method will be explained, followed by the development of a the-
oretical framework for analyzing the data. Then, in subsection 2.2.3 the theory will
be applied to the case of a simple shear flow, applicable to the Couette geometry in
which we performed our experiments. The third section contains a description of our
experimental procedure and the final section is devoted to the results and discussion.

2.2 The new approach

In this section we shall present the salient features of a simple and accurate experi-
mental technique for measuring the self-diffusion coefficient in concentrated sheared
suspensions.

2.2.1 Basic concepts

We examine the phenomenon of diffusion by investigating the positions of tracer
neutrally buoyant spherical particles immersed in a suspension of otherwise identi-
cal spheres undergoing shear. The tracers are colored black in order to distinguish
them from the surrounding particles, which are refractive index matched with the
suspending fluid. The images are taken at a fixed position in the geometry, but, be-
cause the suspension is being sheared, the tracers move with the general flow and
will stay in the image window only for a limited time. Figure 2.2 shows an example
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of two successive images taken at a time interval∆t with the bulk flow as indicated
so that all the particles move from left to right. The imaging window occupies a two-
dimensional rectangular area. In an experimental set-up, the window will always be
the two-dimensional projection of a three-dimensional fluid volume, because of the
finite depth of focus of the optics (This effect will be dealt with in the next subsection
and does not change the general considerations to be described below). The black
particles in figure 2.2 represent the tracers, while the white ones refer to the refrac-
tive index matched particles, which are invisible if the matching is perfect. Particles
intersecting the border of the image window are not drawn.

vflow

D t

y
x

Figure 2.2: Schematic diagrams of two successive images of a fluid element in a
sheared suspension.

The motion of the non-colloidal particles consists of two parts: a convective mo-
tion along the streamlines of the bulk fluid flow and fluctuations due to their hydro-
dynamic interactions with other particles. The latter give rise to the shear-induced
diffusion, both the self-diffusion and, if present, the gradient diffusion. An essential
step in the technique consists of locating all theM tracers in the second image as
well as all theN tracers in the first image and then calculating the two-dimensional
vectors:

∆x̃nm= (xm�xn;ym�yn) n= 1;2; ::;N;m= 1;2; ::;M

where(xnyn) and(xm;ym) refer to the positions of the particle centers in the first and
second image, respectively. This results intoN �M different two-dimensional dis-
placement vectors∆x̃nm, generally a number too small for performing a meaningful
statistical analysis. Figure 2.2, for example, yields 12 vectors. But if the procedure
is repeated for a large number of image combinations with the same time-interval,
the number of vectors increases rapidly. These data can be used to define the func-
tionC2D(∆x̃;∆t), which denotes the number of times a two-dimensional displacement
vector∆x̃ appears in the ensemble of images. The functionC2D(∆x̃;∆t) thus repre-
sents the experimental probability density of finding a vector∆x̃ in the ensemble of
images.

The vectors∆x̃nm can be divided into two different categories. The first contains
all the vectors∆x̃auto

nm for which tracerm is the same asn. On these occasions, the
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particle has not left the image window during the time interval. The second category
contains all the cross-correlation vectors∆x̃cross

nm , between different tracer particles
in consecutive images. For example, assume thatN0 (N0 � N) particles in the first
image of figure 2.2 are present in the second image as well. Then, the total num-
ber of N �M correlation vectors∆x̃nm consists ofN0 auto-correlation vectors∆x̃auto

nm
andN �M�N0 cross-correlation vectors∆x̃cross

nm . For the analysis of the particle mo-
tion, the auto-correlation vectors∆x̃auto

nm are of interest because they contain informa-
tion about the displacements of individual particles during the time interval∆t. The
cross-correlation vectors are of less interest, although they contain information on the
spatial distribution of the tracer particles in the fluid.

Unfortunately, it is impossible to tell a priori whether a vector∆x̃nm belongs to
the first or to the second category. This would only be possible if the time interval
was very small, so that one could easily detect where the individual particles have
gone. In the general case of larger time intervals, however, this would be very diffi-
cult and thus complicate the interpretation of the images. Fortunately, our technique
does not need this information in evaluating the self-diffusivity. Specifically, we shall
show in the next section that the auto-correlation and cross-correlation contributions
to C2D(∆x̃;∆t) are of a different nature, and therefore can be separated statistically.
Then, once the auto-correlation part has been extracted from the correlation vec-
tors, the diffusive motion of individual particles can be analyzed. Before proceeding
though, let us first generalize the concept to the full three-dimensional formulation.

2.2.2 Theoretical formulation in three-dimensions

In the experimental system, the two-dimensional images are the projection of a three-
dimensional fluid volume. The effects of this projection onto a finite-sized two-
dimensional image window have not been taken into account so far and will be ana-
lyzed in this section. As will be shown, this slightly complicates the interpretation of
the experimentally determined functionC2D(∆x̃;∆t) mentioned in the previous sec-
tion, but, after carefully considering these effects,C2D(∆x̃;∆t) can be directly related
to the actual three-dimensional probability density of the particles which is the quan-
tity of primary interest. No a priori assumptions on the nature of the particle motion
have to be made.

The effect of the projection is that the three-dimensional displacement vectors
∆x� (∆x;∆y;∆z) in the fluid volume become two-dimensional vectors on the image,
∆x̃ � (∆x;∆y). Thus, determining the correlation functionC2D(∆x;∆y;∆t) we are,
in essence, counting the number of two-dimensional vectors(∆x;∆y) appearing in
the images by adding all the three-dimensional vectors(∆x;∆y;∆z), regardless of the
value of the out of plane distance∆z. This can be formulated mathematically as

C2D(∆x;∆y;∆t) =
Z

C3D(∆x;∆y;∆z;∆t)d∆z (2.1)
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whereC3D(∆x;∆y;∆z;∆t) is the three-dimensional spatial correlation probability of
the image ensemble, representing the chance of finding a displacement(∆x;∆y;∆z).
Off hand, it might appear thatC3D(∆x;∆y;∆z;∆t) should equalP(∆x;∆t), where
P(∆x;∆t) is defined as the theoretical probability density of finding two particles
with center to center vector∆x after a given time interval∆t. However, owing to
experimental limitations, the two functions are related by

C3D(∆x;∆t) =
ZZZ

V

S(x;x+∆x)P(∆x;∆t)dV (2.2)

whereS(x;x+∆x) to be discussed further on in this section, is the experimental prob-
ability of detecting the particles referred to above.

The functionC3D(∆x;∆y;∆z;∆t) thus represents the ensemble averaged experi-
mental sampling of the probability densityP(∆x;∆t) and will be analyzed in terms
of P(∆x;∆t). Next, following the same arguments as in section 2.2.1, we split the
probability density functionP(∆x;∆t) into two parts. The first, termed the spatial
auto-correlation in section 2.2.1, refers to the probability that the same particle has
been displaced by∆x. In terms of the probability distribution, it is equivalent to
the transition probability densityPtrans(∆x;∆t;x) of a particle being displaced by∆x
during the time∆t, starting from positionx. The functionPtrans(∆x;∆t;x) contains
fundamental information on the particle motions.

The second contribution to the total probability densityP(∆x;∆t) refers to the
probability density of finding two different tracer particles at relative positions∆x
after the time-interval∆t. This part of the distribution probability density will be de-
noted byPdistr(∆x;∆t), since it is linked to the distribution of different tracer particles
over the image window.Pdistr(∆x;∆t) can then be expressed as:

Pdistr(∆x;∆t) =
ZZZ

P1(x; t)P2(x+∆x; t +∆t)dx (2.3)

whereP1(x; t) is the probability density of finding a tracer atx andP2(x+∆x; t+∆t) is
the conditional probability density of another tracer being on the positionx+∆x after
a time-interval∆t given that the first tracer was atx. Also, the domain of integration
is the whole image volume. Of course, if the tracers are distributed homogeneously
over the window,P1 is constant and can be taken out of the integration. Having
thus defined the probability density functionsPtrans(∆x;∆t;x) andPdistr(∆x;∆t), we
proceed with the derivation of their relations with the spatial correlation function
C3D(∆x;∆t) (equation (2.2)), which in turn can be used to determineC2D(∆x̃;∆t) via
equation (2.1). The main effect to consider is the fact that the observed fluid volume
is of limited size in all three directions and that the image analysis introduces some
errors in detecting the particles in the images. Both factors influence the sampling
functionC3D(∆x;∆t).
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First, let us investigate the effect of the window boundaries in thex- and y-
direction. Note that if the image window has widthW and heightH, the two-
dimensional displacement vector∆x̃ can never exceed the limits

�W < ∆x<W

�H < ∆y< H

As an extra complication, due to the limited size of the window, the chances of finding
a large vector(∆x;∆y) are lower than finding small ones. When both∆x and∆y are
positive, this windowing effect is illustrated in figure 2.3 which shows that, within
the fixed image window, the vector(∆x;∆y) can only be realized starting from the
shaded fraction of the window area, otherwise the end of the vector would point out
of the window.

D x

D y

y

x

W

H

D x

Figure 2.3: Schematic of the windowing effect on the correlation function for pos-
itive values of∆x and∆y.

Thus, the starting two-dimensional vectorx̃ must lie inside the region bounded
by

1
2
(j∆xj�∆x)< x<W� 1

2
(j∆xj+∆x)

1
2
(j∆yj�∆y)< y< H� 1

2
(j∆yj+∆y)

for the two-dimensional vector̃x+∆x̃ to be observed. The absolute values have to
be used, because the windowing effect limits the effective size of the image window
also for two-dimensional displacement vectors∆x̃ with negative components.

In addition, it is not obvious that all the tracers within the fluid volume will be
detected under all circumstances, as occurs, for example, when the lighting is inho-
mogeneous or when the tracers are too closely together to be separated by both the
human eye and sophisticated image analysis software. Therefore, it is reasonable
to introduce the detection probabilitySxy(x;y) which varies over the image window.
Ideally, when all the tracers can be detected,Sxy equals unity at all positions within
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the image window. Although this can not be realized in practice, it is still possible
to makeSxy almost a constant by carefully manipulating the lighting arrangement.
But even so, its value will generally be slightly smaller than unity because, in any
large collection of acquired images some of them will contain tracers that appear to
be overlapping and cannot be located accurately.

The third dimension of the fluid volume is thez-direction, perpendicular to the
object plane. Here, a finite volume around the focal plane of the optics will be ob-
served due to the finite depth of focus (d:o:f :). Specifically, if z= 0 denotes the
location of the focal plane, the depth of focus is usually defined so that thez-values
at which tracer particles can be distinguished range from�1

2d:o:f : to +1
2d:o:f :. As a

result, the detection probabilitySz will always be a very strong function ofz. Even if
we assume thatSz does not depend on thex- andy- positions (which is reasonable if
thed:o:f : is small compared to the window size), it will, by definition, have its max-
imum in the focal plane and vanish atz=�d:o:f : where the tracers can no longer be
distinguished from their surroundings.

Using the arguments presented in the preceding paragraphs, equation (2.2) can
be written in the following way:

C3D(∆x;∆y;∆z;∆t) =Z zmax

zmin

Z ymax

ymin

Z xmax

xmin

[n̂Sxy(x;y)Sz(z)P1(x)] ��
n̂Sxy(x+∆x;y+∆y)Sz(z+∆z)Ptrans(∆x;∆t;x)

�
dx dy dz

+

Z zmax

zmin

Z ymax

ymin

Z xmax

xmin

[n̂Sxy(x;y)Sz(z)P1(x)] �

[n̂Sxy(x+∆x;y+∆y)Sz(z+∆z)P2(x+∆x;∆t)] dx dy dz
(2.4)

where

xmin = x0� 1
2

W+
1
2
(j∆xj�∆x); xmax= x0+

1
2

W� 1
2
(j∆xj+∆x);

ymin = y0� 1
2

H +
1
2
(j∆yj�∆y); ymax= y0+

1
2

H� 1
2
(j∆yj+∆y);

zmin = z0� 1
2

dof+
1
2
(j∆zj�∆z); zmax= z0+

1
2

dof� 1
2
(j∆zj+∆z)

and n̂ is the average number of tracers in the fluid volume which is introduced in
order to normalize the probability density functions. In addition,(x0;y0;z0) denotes
the center of the object volume within which the measurements are being made. Both
integrands in equation (2.4) involve a product of two terms: the first contains the
probability that a tracer is observed at positionx and the second the probability that
a tracer –either the same(Ptrans) or another(P2)– is observed at positionx+∆x after
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the time-interval∆t. The integration overx, y andz originates from the finite size of
the object volume, discussed earlier.

The general equation (2.4) can be simplified by lettingP1(x) be constant, which
is permissible if the gradients in the concentration of the tracer particles are negligible
on the scale of the window size. In addition, as was stated earlier,Sxy(x;y) will be
constant under appropriate experimental conditions. Consequently, equation (2.4)
becomes

C3D(∆x;∆t) =

K1 n̂2
Z zmax

zmin

Z ymax

ymin

Z xmax

xmin

Sz(z)Sz(z+∆z)Ptrans(∆x;∆t;x) dx dy dz

+ K1 n̂2
Z zmax

zmin

Z ymax

ymin

Z xmax

xmin

Sz(z)Sz(z+∆z)P2(∆x;∆t) dx dy dz

(2.5)

whereK1 = P1 �S2
xy is anO(1) constant. Therefore, on substituting equation (2.5) into

equation (2.1) we obtain that

C2D(∆x̃;∆t) =

K1 n̂2
Z +dof

�dof

Z zmax

zmin

Z ymax

ymin

Z xmax

xmin

Sz(z)Sz(z+∆z)Ptrans(∆x;∆t;x) dx dy dz d∆z

+ K1 n̂2
Z +dof

�dof

Z zmax

zmin

Z ymax

ymin

Z xmax

xmin

Sz(z)Sz(z+∆z)P2(∆x;∆t) dx dy dz d∆z

(2.6)

where the integration over∆z is performed from the minimum (�d:o:f :) to the max-
imum (+d:o:f :) possible distance between tracers in the∆z-direction. The second
term on the right hand side of equation (2.6) can be simplified further by considering
special forms forP2(x+∆x;∆t). Although some comments on this subject will be
made at the end of the next subsection, a thorough analysis is beyond the scope of this
thesis, which concerns exclusively the first term. Note that, in arriving at equation
(2.6), no a priori assumptions on the transition probability densityPtrans(∆x;∆t;x)
have been made. In the next section, equation (2.6) will be evaluated when the tran-
sition probability is that for the diffusive motion of tracers in a simple shear flow, on
which our experimental work is focused.

2.2.3 The evaluation of self-diffusion coefficients in simple shear flow

The analysis discussed in the previous section directly links the experimental results
to the transition probability density function of the tracers. Different theoretical hy-
potheses forPtrans(∆x;∆t;x) can be introduced into equation (2.4) to check their va-
lidity. In this chapter we concentrate on the topic of self-diffusion in a concentrated
suspension undergoing simple shear flow. Previous experiments have shown that, for
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sufficiently long time-steps∆t, the motion of the particles can be viewed as a dif-
fusion process with different diffusion coefficients along the characteristic flow axes
(flow, velocity gradient and vorticity direction). In such a case, the transition proba-
bility densityPtrans(∆x;∆t;x) satisfies the general convective diffusion equation:

∂Ptrans

∂t
=�∇ � (v Ptrans)+∇ �D �∇Ptrans (2.7)

with initial conditionPtrans(∆x;0;x0) = δ(∆x), wherev is the convective bulk particle
velocity. For a stationary simple shear flowv = (γ̇y;0;0), with thex-axis in the flow
direction and they-axis in the velocity gradient direction. The diffusion tensorD is
defined by

h∆x ∆xi � 2 D ∆t = 2

2
4 Dxx Dxy 0

Dyx Dyy 0
0 0 Dzz

3
5∆t (2.8)

Dxx, Dyy andDzz being the diffusion coefficients in the different directions. Due to
symmetry, all the off-diagonal elements ofD are zero except forDxy andDyx which
are equal (see Brady & Morris, 1997). The solution of equations (2.7) and (2.8) can
be written in the form (see Van Kampen, 1992):

Ptrans(∆x;∆t;x) =

1

(2π) 3
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where
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On inserting equation (2.9) into equation (2.6) and integrating with respect tox,
y and∆z, we obtain

C2D(∆x;∆y;∆t) =

K1 n̂2 ψ(∆t)χ(∆t;dof) (W�j∆xj) �exp
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+ K1 n̂2 (W�j∆xj) (H�j∆yj)
Z +dof
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Z zmax
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Sz(z)Sz(z+∆z)P2(∆x;∆t) dz d∆z

(2.10)
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where

χ(∆t;dof) =
Z +dof

�dof

Z zmax
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Sz(z)Sz(z+∆z) exp

�
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2σ2
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ψ(∆t) =
1

(2π) 3
2 σxσyσz

(2.12)

Ξ1(∆x;∆y;∆t) = ∆x� 1
2

γ̇∆t (2y0�H + j∆yj)�∆y
Dxy

Dyy
(2.13)

and

Ξ2(∆x;∆y;∆t) = ∆x� 1
2

γ̇∆t (2y0+H�j∆yj)�∆y
Dxy

Dyy
(2.14)

Equation (2.10) describes the shape of the experimentally determined function
C2D(∆x;∆y;∆t) for the case of a diffusive tracer motion in a simple shear flow. As
will be shown in the more detailed description of the data analysis in section 3.3, this
expression can be simplified further and then used to calculate the diffusion coeffi-
cientDyy by analyzing only the width of the auto-correlation peak ofC2D(∆x;∆y;∆t)
in the ∆y-direction. Note that the amplitude of the auto-correlation part (first term)
depends on the window size, the time step (throughχ andψ) and on the depth of
focus of the optical system (throughχ), but not onDyy.

The preceding analysis can also be performed when the image plane is in the∆x-
∆z-plane, which is the case when the suspension is viewed from the velocity gradient
direction. Here, however, the counterpart of equation (2.10) is simply:

C2D(∆x;∆z;∆t) =

K2 n̂2 ψ(∆t)ξ(∆x;∆t;dof) (W�j∆xj) (jH�∆zj) exp
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2σ2
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(2.15)

where
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(2.16)

andK2 = P1 �S2
xz is a constant which is slightly different fromK1. The above differs

from equation (2.10) in the sense, that the shape of the auto-correlation peak in the
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∆z-direction is simply that of a Gaussian peak, with a width that only depends on
the diffusion coefficientDzz. Consequently, equation (2.15) enables one to calculate
the diffusion coefficientDzz by analyzing the width of the auto-correlation peak of
C2D(∆x;∆y;∆t) in the ∆z-direction. Equation (2.16) is somewhat more complicated
than equation (2.11) because, nowξ depends on both∆x and∆t.

Of course, the cross-correlation parts of equations (2.10) and (2.15) cannot be
neglected in calculating the diffusion coefficients from the experimentally obtained
functionsC2D because this part influences the shape of the correlation function in
the region of the auto- correlation peak and must be subtracted out during the fit-
ting procedures. To achieve this we recall that, as was mentioned in section 2.2.2,
P2(∆x;∆t) contains information about the distribution of different particles in consec-
utive images and is therefore closely related to the pair-distribution function. Sym-
metry arguments, therefore, are sufficient to eliminate the cross-correlation term in
a simple shear flow. Specifically, as shown in figure 2.4, the∆x-∆y-plane on which
our function is measured can be divided into four quadrants with the original posi-
tion of the tracer being at the origin so that, in simple shear, the flow in quadrants
II and IV is compressive and in quadrants I and III extensional. But, since the flow
in quadrants I and III is equivalent and similarly in quadrants II and IV, the pair-
distribution function has an obvious symmetry in that each pointA(∆x;∆y) has a
counterpartA0(�∆x;�∆y) where the pair-distribution function is the same. This sym-
metry should also apply to the functionP2(∆x;∆t) and, as will be shown in section
2.3.3, this argument enables one to eliminate the cross-correlation contribution from
the measured experimental data in an elegant way.

D y

D x
W

H

-W
-H

0

0

III IV

II IA

A'

Figure 2.4: Schematic of four quadrants in the∆x-∆y-plane on which the function
C2D is measured. The origin refers to the original position of the tracer.
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2.2.4 Previous experimental work

The general idea of the technique described above is in some respects similar to other
well-known experimental methods, for example Particle Image Velocimetry (PIV),
where in order to measure the velocity field in complex flow geometries, the fluid
is seeded with small tracers which accurately follow the flow because of their small
size. One difference, however, is that, whereas PIV uses very small time intervals∆t
between the images to calculate velocity vectors, the time-intervals are considerably
larger in the present application so as to maximize the displacements of the tracers.

On the other hand, Ecksteinet al. (1977) and Leighton & Acrivos (1987a) exam-
ined the phenomenon of self-diffusion by investigating the motion of a single labeled
sphere immersed in a suspension of otherwise identical spheres being sheared in a
Couette device. In their technique, the radial position (the velocity gradient direction)
of the labeled sphere was measured after each rotation (Ecksteinet al.) or inferred
from the time taken for the particle to complete a transit of the device (Leighton &
Acrivos). These data were then related to the random walk in the radial direction.
Recently, Phan & Leighton (1993) also measured the self-diffusivity in the vorticity
direction by observing the vertical position of a marked sphere each time it passed
an observation window. It is worth remarking at this point that in the experiments of
both Leighton & Acrivos (1987a) and Phan & Leighton (1993), the strainγ̇∆t was at
least ofO(10), which, as will be shown presently, is more than an order of magnitude
larger than in our experiments.

2.3 Experimental work

In this section we present the experimental details of our measurements of the shear-
induced coefficient of particle self-diffusion. The basic approach consisted of evalu-
ating the positions of tracer particles, immersed in a suspension of otherwise identical
spheres, being sheared in a narrow gap Couette device.

2.3.1 Apparatus and materials

The experiments were performed in a narrow gap cylindrical Couette device, shown
in figure 2.5, which consisted of two cylinders made of high quality plexiglass. The
inner radius of the outer stationary cylinder (RO) was 8.224 cm and the outer radius
of the inner rotating cylinder (RI ) was 7.542 cm, giving a gap size equal to 0.682
cm. The inner cylinder was mounted on a shaft, which in turn was mounted on
a computer controlled feedback motor (ID Corp., California). Also, the shaft was
aligned accurately with two bearings separated by O-rings. A great advantage of this
design is that its transparency enabled us to provide uniform lighting to the imaging
volume.
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Figure 2.5: Schematic of the Couette device and the camera positions (a) and (b)
for observations in, respectively, the velocity gradient and vorticity directions.

The particles used in the experiments were class 4F acrylic spheres obtained from
ICI. Their density was measured to be 1.172 g/ml and the spheres containing air
bubbles were removed by density segregation. The polydisperse material was sieved
many times to obtain the diameter range 90�15µm. Following the recipe of Krishnan
et al. (1996), a suspension of these particles was made using a mixture of 77.38%
Triton X-100, 9.23% water and 13.39% anhydrous zinc chloride (weight percentages)
which matched the refractive index and density of the acrylic spheres. The pure
suspending fluid had a viscosity of 3.4 Pa�s at the operating temperature of 23ÆC.
Tracer particles were prepared by dyeing part of the acrylic spheres with RIT liquid
fabric dye and their density was also found to be close to 1.172 g/ml. A small amount
of the tracer particles (typically 0.4 vol.% in our experiments) were then added to
the suspension. The suspension was sheared for several hours to achieve a uniform
concentration and to drive out any air bubbles. The experiments were carried out at
two shear rates (0.78 s�1 and 1.8 s�1) for particle volume fractions of 20%, 30%,
40% and 50%.

2.3.2 Image analysis

The motion of the tracer particles was observed by viewing two small volumes of the
suspension from positions (a) and (b), shown in figure 2.5, using a high resolution
(1008� 1018 pixels) CCD camera (Kodak MegaPlus ES1.0) with Infinity Optics
(8� magnification). For lighting we used a Fiber Optic Illuminator (Cole Parmer
Instrument Company) that provided an excellent contrast in the image. The camera
was mounted on a three-dimensional traversing system, which allowed us to focus the
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camera precisely at the desired locations. Images from the CCD camera were passed
via an 8-bit digital video signal to a dedicated image acquisition and processing board
(Oculus F64 by Coreco Inc.) which operated on a personal computer equipped with
a 200 MHz Intel Pentium Processor. We programmed the frame buffer arrays of the
F64 board to enable the acquisition of 5 consecutive images at equal time intervals
∆t (with ∆tmin = 55 ms) before storing the images into the hard disk of the computer.
This program was typically run with 100 loops to acquire and store 500 images auto-
matically. The grabbing times of all the images were stored for further analysis.

We used the positions (a) and (b), shown in figure 2.5, to measure the self-
diffusion coefficients in the velocity gradient and in the vorticity directions respec-
tively. When viewing from position (a) the center of the fluid elementW�H�d:o:f :
of the suspension was chosen 1.7 cm above the bottom and 1 mm inside the outer wall
of the Couette gap. When viewing from position (b), the center of the imaging vol-
ume was kept at 1 mm below the top interface and at 1.5 mm inside the outer wall of
the Couette gap. These positions were chosen to reduce the wall effects as far as pos-
sible. The cross-sectional area,W�H, was calculated using the known magnification
of the camera optics and in our experiments was found to be 1.17 mm�1.18 mm. The
depth of focus,d:o:f :, was determined by viewing a 45Æ inclined plane through the
camera with the preset optics. The inclined plane had four sets of target columns
containing different numbers of line pairs per millimeter. The resolution appropriate
for the given magnification was then chosen and the distance up to which the line
pairs were distinctly visible was measured. This distance was read from either the
computer monitor or the scale on the inclined plane. Using this technique, the depth
of focus was found to be 425�25µm.

The positions of the tracer particles in each digitized image were accurately deter-
mined using the imaging software (Visilog 5.1 by Noesis Vision Inc.). This software
stretched the pixel-grey value dynamic range (process called equalization) to make
the details more visible and then removed the unwanted small scale noise. After
running a binarization operation, border particles were eliminated and analysis pro-
cedures were performed on the dark objects in the image. These procedures involved
the calculation of the areas, sphericities, blackness and positions of the dark objects.
If the properties met our pre-set criteria, an object was counted as being a tracer and
the position of its center was stored in a file. In this way, all the images were scanned
and all the tracers and their locations were identified.

For our self-diffusion measurements, a large number of images were taken for
each run in order to ensure good ensemble averaging. Typically, we acquired 500
images. The positions of the tracers, as obtained from the measurements described
above, were then used to generate the correlation functionsC2D for each set. The
method for generating these functions and evaluating the self-diffusion coefficients
will now be described.
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2.3.3 Data analysis

The data on the positions of all the tracer particles in the images were used to cal-
culate the correlation functionC2D(∆x;∆y;∆t) in the following way. For the total
ensemble, the two-dimensional displacement vectors(∆xnm;∆ynm) were calculated
for all combinations of the tracers in consecutive images, as described in section 2.1.
The∆x-∆y-domain (�W� ∆x�W and�H � ∆y�H) was discretized inN∆x�N∆y

small area elements, usually called numerical bins. All the vectors(∆xnm;∆ynm) were
put into the corresponding numerical bin. The number of vectors in each bin was then
divided by the number of images,Nima, and by the area covered by each numerical
bin, 2W=N∆x �2H=N∆y, to arrive at the normalized value of the correlation function
C2D(∆x;∆y;∆t) at the position of the center of the bin. The normalization procedure
is necessary to obtain the correct value if numerical integration is performed and to
allow comparison with the theoretical predictions of equations (2.10) and (2.15). The
number of binsN∆x�N∆y must be small enough in order for each bin to contain a suf-
ficient number of vectors for further analysis, but large enough to provide information
on the behaviour of the correlation function at small length scales.

From each ensemble of images, the correlation function could be obtained for
different time-steps, by not only comparing consecutive images at a time interval∆t,
but by also analyzing image combinations at other intervals(2�∆t;3�∆t) within one
grabbing sequence of 5 images.

Using the data analysis procedure described above, three-dimensional plots could
be generated of the functionC2D(∆x;∆y;∆t) on the∆x-∆y-plane. Because in our
experimental set-up the particles moved from left to right due to convection, the
auto-correlation peak in equations (2.10) and (2.15) was always located at positive
values of∆x. As a result, the values of the correlation functionC2D(∆x;∆y;∆t)
for ∆x > 0 involve a combination of an auto- and a cross-correlation, whereas the
values ofC2D(∆x;∆y;∆t) for ∆x< 0 consist only of cross-correlation contributions.
Using the symmetry argument presented in section 2.3, the auto-correlation part of
C2D(∆x;∆y;∆t) can then be obtained by calculating:

Cauto
2D (∆x;∆y;∆t) =C2D(∆x;∆y;∆t)�C2D(�∆x;�∆y;∆t) for ∆x� 0 (2.17)

In order to evaluate the diffusion coefficients we focused our quantitative analysis
on the displacements∆y in the velocity gradient (and∆z in the vorticity direction).
Since we are not interested in the∆x-displacements, we used a very small number of
bins in∆x, N∆x = 2, i.e. one for negative and one for positive∆x-values. Then, after
performing the subtraction of equation (2.17), we integratedCauto

2D (∆x;∆y;∆t) over
∆x to obtain (see equation (2.10)):

Cauto
1D (∆y;∆t) = A �exp
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2σ2
y

!
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In principle, as seen from the above,∆y should also enter into the expression for
the amplitudeA in view of equations (2.13) and (2.14) thereby complicating the data
analysis. But sincej∆yj is of the order of the particle radiusa (and, similarly, for
∆yDxy

Dyy
provided thatDxy

Dyy
is O(1) or smaller), whileH, y0 andW are all O(1 mm)

and therefore an order of magnitude larger, the amplitudeA becomes independent
of j∆yj with an error ofO(a=H). Consequently, the width of the peak ofCauto

1D de-
terminesσ2

y which, in view of equation (2.9), equals twice the product ofDyy with
the time-interval∆t, so that the diffusion coefficient can be determined by fitting the
experimental data with equation (2.18).

We followed a similar procedure for analyzing the functionC2D(∆x;∆z;∆t) and
calculating the diffusivityDzz in the vorticity direction. Again, after subtracting the
cross-correlation part, we integratedCauto

2D (∆x;∆z;∆t) over∆x to obtain (see equation
(2.15)):

Cauto
1D (∆z;∆t) = B � (H�j∆zj) �exp
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�
(2.20)

with

B= K2 n̂2 ψ(∆t)
Z W

�W
ξ(∆x;∆t;dof) (W�j∆xj) d∆x

As H � j∆zj, the square of the widthσz of this peak equals twice the product of the
diffusion coefficientDzz and the time interval∆t (see also equation (2.9)). Hence
the diffusion coefficientDzz can be determined by fitting the experimental data with
equation (2.20).

In summary then, the diffusion coefficientsDyy and Dzz can be calculated by
reducing the two-dimensional functionsC2D(∆x;∆y;∆t) andC2D(∆x;∆z;∆t) to their
one-dimensional equivalents, resp.C1D(∆y;∆t) andC1D(∆z;∆t), and by subsequently
fitting the resulting curves with the Gaussian peaks of equation (2.18) and (2.20).
The amplitudesA andB of the respective equations (2.18) and (2.20) peaks were not
analyzed thoroughly, because they contain a number of unknown functions.
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2.4 Results and discussion

2.4.1 Validation of the technique

Using the experimental set-up, images were obtained of sufficiently high quality to
carry out the required accurate image analysis procedures. A typical example of
our image quality is shown in figure 2.6, which depicts a sample of two consecutive
images (∆t = 220 ms) in a suspension with particle concentrationφ = 0:30 being
sheared at the ratėγ = 1:79 s�1.

Figure 2.6: Photographs of two successive images taken 220 ms apart in a 30%
concentrated suspension sheared at 1.79 s�1. Here, the flow is from left to right.

In order to ensure that any observed self-diffusivity in a concentrated suspension
was due only to the diffusive motion of the tracers, it was necessary to rule out the
existence of any significant errors in our experimental set-up or in the image analysis
procedure. The possible errors in the former included mechanical vibrations, rotation
irregularities of the motor, non-uniformities in the Couette gap and misalignment of
camera-optics. In addition, we expected some error in the calculation of the particle
locations by the image analysis procedure. Although the importance of the image
analysis error could not be estimated a priori, the errors originating from this source
were minimized by applying homogeneous lighting and optimizing the contrast.

In order to quantify these errors, we performed measurements in a dilute suspen-
sion (φ = 0:4%) of only tracer particles, where the self-diffusivity was expected to be
negligible compared to the self-diffusivities reported in the literature for concentrated
suspensions. Following the procedures described in section 2.3, the broadening of the
correlation peaks in both the velocity gradient and vorticity direction was measured.
This broadening is believed to be the result of the systematic errors mentioned above.
If it was interpreted as self-diffusion, we found that the value of the associated dif-
fusion coefficient was at most 10% of the values we observed for the concentrated



32 NOVEL TECHNIQUE FOR MEASURING TRACER-DIFFUSION

suspensions at 30% volume fraction. The influence of the image analysis procedures
on the diffusivity results was also checked and the results were found to be insensi-
tive to changes in the criteria which we used for the detection of tracer particles in the
images. These measurements in the dilute suspension showed that the contributions
of the experimental errors were small. Hence, we applied the technique to determine
the self- diffusivity in concentrated suspensions.

2.4.2 Particle self-diffusion in concentrated suspensions

The diffusion-coefficient experiments were conducted at solids concentrations rang-
ing from 20 to 50% for values oḟγ∆t ranging from 0.05 to 0.5.

In figure 2.7 we present three-dimensional correlation plots for the case ofφ =
0:30 at γ̇∆t = 0:085 and 0.34, whereC2D(∆x;∆z;∆t) is shown as a function on the
∆x-∆z-plane according to the analysis procedures described in section 2.3.2. The
∆x- and∆z-axis respectively represent the correlation distances in the velocity and
vorticity gradient direction. The units of the displacements in the figures are pixels,
for direct reference to the images. The auto-correlation peak is clearly distinguishable
and is dominant over the cross-correlation contribution, which appears as the scatter
in the rest of the plane. The width in the∆x-direction is the result of variations in the
convective velocity over the window (see figure 2.2); in the∆z-direction the width is
governed by the diffusive process and is much smaller. As the time-step∆t increases
–from figure 2.7a to b–, the convective displacements increase and the peak shifts to
the right. Also, the amplitude of the peak decreases, as fewer particles are detected
in two consecutive images. These observations are in qualitative agreement with
our expectations and figure 2.7 further validated our choice of the number of images
acquired per run and the time interval∆t between consecutive images.

For a quantitative analysis, the three-dimensional plots of figure 2.7 were reduced
to plots ofC1D(∆z;∆t) as discussed in section 2.3.3. Figure 2.8 shows the graphs of
C1D(∆z;∆t) versus∆z for the same experimental data as presented in figure 2.7, after
subtraction of the cross-correlation part. Again, the displacements are expressed in
pixels, but this could easily be transformed into SI-units by using the known camera
magnification (1 pixel�= 1.16µm). The graphs also show the best possible fit with
a Gaussian peak. It must be noted, that although the width of the peak is small
compared to the particle size, a clear broadening can be observed in going from
figure 2.8a to b, where∆t is increased.

The decrease in the peak height with increasing values ofγ̇∆t also limits the range
over which experiments could be performed, because the auto-correlation peak has to
be distinguishable from the cross-correlation contribution. In our experimental set-
up, measurements could be carried out forγ̇∆t ranging from 0.05 to 0.5. For larger
γ̇∆t the particles did not remain within the window long enough to be detected in
two consecutive images and thus contribute to the peak. This limitation was mainly
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Figure 2.7: Plots of the experimentally determined correlation functionC2D in the
∆x-∆z-plane forφ = 0:30 andγ̇∆t = 0:085(a) & 0.34 (b).
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Figure 2.8: Plots of the experimentally determined correlation functionC1D vs. the
displacement∆z for φ = 0:30 andγ̇∆t = 0:085(a) & 0.34 (b).
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caused by the fact that the experiments had to be performed in a region far enough
from the wall of the outer cylinder to reduce wall effects as far as possible. The result
is of a trade-off between the need of staying away from the wall and maximizing the
range oḟγ∆t.

The width of the peaks in figure 2.8 is equal to the parameterσz defined in
equation (2.9):σ2

z = 2Dzz∆t. For further analysis of the diffusion coefficientDzz

(andDyy) and comparison with the results of other studies, the dimensionless scaling
D̂ = D=γ̇a2 must be introduced, wherea is the particle radius. Using this formulation
we therefore introduce the following two dimensionless diffusion coefficients:

σ2
i

a2 = 2Dii γ̇∆t i = y;z (2.21)

For all experiments, the width of the peak has been determined and the results
are presented in figure 2.9a to d where the dimensionless valuesσ2

y=a2 andσ2
z=a2

are plotted versuṡγ∆t for the different volume fractions. These figures show that the
linear scaling of equation (2.21) applies over almost the entire range ofγ̇∆t, i.e. from
γ̇∆t = 0:05 to 0.5, although forφ = 0:20 the linearity is not as clear as for the other
experiments because the width of the auto-correlation peak is small and hence cannot
be determined with much accuracy. The particle motion can, therefore, be described
as a diffusive process on this timescale and the diffusive character seems to exist over
the entire range. This is rather surprising, because it was generally believed thus far
that diffusive behaviour could only be attained for experimental timescalesγ̇∆t > 1,
i.e. when the timescales are larger than the assumed collision time in a simple shear
flow and a particle has experienced several interactions.

Following equation (2.21), the dimensionless diffusion coefficientsD̂yy andD̂zz

can be calculated as one half the slope of the linear fits shown in figures 2.9a to d.
In all these figures, the diffusion coefficient in the velocity gradient direction (D̂yy) is
considerably larger than in the vorticity direction (D̂yy) with the ratio being about 1.7
for all volume fractions.

Our results for the diffusion coefficients are plotted in figure 2.10a and b to-
gether with the results of the previous studies by Ecksteinet al. (1977), Leighton &
Acrivos (1987a) and Phan & Leighton (1993). Although these earlier experiments
were performed foṙγ∆t � 1 by measuring the transit time and position of single
tracer particles, they are in remarkable agreement with our results for whichγ̇∆t < 1.
The error bars drawn for our data represent the uncertainty in the linear fits of figures
2.9a to d; this error turned out to be dominant over the systematic errors, which were
discussed in the previous section.

The self-diffusion coefficientŝDyy andD̂zz increase rapidly with increasing par-
ticle concentration, as was reported in all previous experimental studies, but their
values appear to asymptote atφ = 50%. The same trend was also observed in the
experiments by Phan & Leighton (1993).
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Figure 2.9: Plots ofσ2=a2, the dimensionless variance of the correlation peak vs.
γ̇∆t for φ = 0:20 (a), 0.30(b), 0.40(c) and 0.50(d); the figures show the results for
both the velocity gradient (�) and vorticity (Æ) directions.
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Figure 2.10: Comparison of the present results with previous experimental data
for (a) the velocity gradient direction and(b) the vorticity direction.Æ–from Phan
& Leighton (1993),�–from Leighton & Acrivos (1987a),�–from Ecksteinet al.
(1977),�–from this study.
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2.4.3 Fluid tracer-diffusion in concentrated suspensions

The fluid-diffusion coefficients were estimated by examining the motion of small
tracers (31:5�6:5µm in diameter) within a concentrated suspension of 325�25µm
diameter particles having concentrations ranging from 30 to 50% and for values of
γ̇∆t ranging from 0.1 to 0.4. It is assumed that the motion of these tiny tracers repre-
sented the true fluid element motion in a suspension of large particles.
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Figure 2.11: Plots ofσ2=a2, the dimensionless variance of the correlation peak vs.
γ̇∆t for φ=0.40; the figure shows the results for both the velocity gradient (�) and
vorticity (Æ) directions.

Following the method described in the subsection 2.4.2, the dimensionless fluid
tracer diffusivitiesDf

yy andDf
zz are calculated as one half the slope of the linear fits

in plots of the dimensionless variance of the correlation peak vs.γ̇∆t. In figure
2.11, we present one such plot forφ=0.40 in both the velocity gradient and vorticity
directions. Our results for the fluid diffusion coefficients are plotted in figures 2.12a
andb together with the results of the particle diffusivities reported earlier in figures
2.10a andb. Note that the diffusivities are scaled withγ̇ a2, wherea is the radius
of particles making up the suspension. Unfortunately, measurements in the velocity
gradient direction could not be performed, for the caseφ = 0:5 due to existence of
a significant curvature in the interface between the suspension and the air above it.
Clearly, the fluid tracer-diffusion coefficients are about 0.7 times the corresponding
particle diffusion coefficients.
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Chapter 3

Measuring Shear-Induced Self-Diffusion in a
Counter-Rotating Geometry�

Abstract

The novel correlation method to measure shear-induced self-diffusion in concen-
trated suspensions of non-colloidal hard spheres which was developed in chapter 2
has been applied in a dedicated counter-rotating geometry. The counter-rotating
nature of the set-up enables experiments over a wider range of well-controlled di-
mensionless time (γ̇∆t in the range 0.03-3.5, compared to 0.05-0.6 in previous ex-
periments; herėγ denotes the shear rate and∆t the correlation time). The accessible
range of timescales made it possible to study the nature of the particle motion in
a more detailed way. The wide radius geometry provides a well-defined flow field
and was designed such that there is optical access from different directions. As a
result, shear-induced self-diffusion coefficients could be determined as a function
of particle volume fractionφ (0.20-0.50) in both the vorticity and velocity gradient
direction. A transition could be observed to occur forγ̇∆t of O(1), above which
the particle motion is diffusive. The corresponding self-diffusion coefficients do not
increase monotonically with particle volume fraction, as has been suggested by nu-
merical calculations and the theoretical model of Brady & Morris (1997). After an
exponential growth up toφ = 0:35, the diffusion coefficients level off. The experi-
ments even suggest the existence of a maximum aroundφ = 0:40. The results are
in good agreement with the experimental data of Phan & Leighton (1993), although
their measurements were performed for much larger values of the dimensionless
time γ̇∆t.

�This chapter has been submitted toPhys. Rev. Eas ”Measuring Shear-Induced Self-Diffusion in
a Counter-Rotating Geometry” by V. Breedveld, D. van den Ende, R.J.J. Jongschaap and J. Mellema
(2000)’
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3.1 Introduction

Shear-induced diffusion of non-colloidal particles is of great importance for under-
standing the transport processes in concentrated suspensions under flow and has
therefore attracted a lot of attention (Davis, 1996).

The nature of the phenomenon is different from the more familiar diffusion con-
cepts of Brownian diffusion in colloidal suspensions, which is caused by thermal fluc-
tuations, and turbulent diffusion, driven by inertial effects. Shear-induced diffusion
is the result of hydrodynamic interactions between suspended particles. In principle,
this is a deterministic process. Due to the complex nature of the hydrodynamics,
however, it can be described as a diffusion process. Shear-induced diffusion has been
studied on two different levels: self-diffusion of individual particles and the collec-
tive process of gradient diffusion, which is studied by the net migration of particles
on the macroscopic level (Acrivos, 1995). In this paper we address self-diffusion. By
studying the results of hydrodynamic interactions on the particle level, we want to
acquire information about the microscopic processes behind shear-induced diffusion.

Only very few experimental studies on shear-induced self-diffusion have been
reported up to now (Ecksteinet al., 1977; Leighton & Acrivos, 1987a; Phan &
Leighton, 1993). These measurements have all been performed by means of the same
technique: a Couette cell is loaded with a concentrated suspension of non-colloidal
particles, to which a tagged tracer particle is added and after each full rotation in the
Couette cell, the passage time of the tracer particle is detected. Fluctuations in the
tracer position and its revolution time can be related to shear-induced self-diffusion
coefficients.

The major disadvantage of the technique is the fact that observations are only
possible after full revolutions in the Couette cell. Consequently, the effect can only be
studied on relatively long timeṡγ∆t �O(10) (the process is fully hydrodynamically
driven so that the straiṅγ∆t is the appropriate dimensionless time, whereγ̇ denotes the
shear rate and∆t the passage time). Moreover, the values ofγ̇∆t cannot be controlled
externally, as is desirable when collecting detailed information about the nature of
the particle displacements. The revolution time of the tracer particles in the Couette
cell depends on their location at the start of the rotation and on the diffusive motion
during the revolution: a particle close to the rotating outer wall of the Couette cell
moves considerably faster than a tracer particle at the stagnant inner wall.

To overcome the problem of ill-controlled strain valuesγ̇∆t we have recently
developed a novel correlation method and applied it successfully in a Couette cell
with rotating inner cylinder (chapter 2). The set-up enabled accurate measurements
over a controlled strain range froṁγ∆t = 0:05 to circa 0:60.

In this paper, new results are presented, which have been obtained with the same
technique, but in a more sophisticated counter-rotating geometry. The new set-up
dramatically enlarges the experimentally accessible range ofγ̇∆t (now 0.03 - 3.5),
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bridging the gap between our previous experimental results of chapter 2 and the lit-
erature data. In the next section the basic equations of the correlation technique are
briefly presented. A description of the apparatus and materials follows in section 3.3.
We present and discuss results in section 3.4 and finally conclusions are drawn.

3.2 Correlation technique

This section contains a brief review of the basic concepts of the novel correlation
technique. For a detailed mathematical description we refer to chapter 2.

The experimental technique is based on spatial correlation of a sequence of video
images of the sheared suspension. The refractive index of the majority of particles
is matched to the suspending fluid. Only a small fraction of colored tracer particles
is used, so that even concentrated suspensions (20-50% volume fraction of particles)
are optically accessible and images can be taken with a digital CCD camera at a fixed
position in the geometry. Due to the refractive index matching in these images only
the tracer particles show up and two consecutive images appear like the pictures in
figure 3.1. The macroscopic flow field is drawn on the left. In accordance with com-
mon conventions,x denotes the velocity direction,y the velocity gradient direction
andz the vorticity direction.

y
x

vflow

D t

Figure 3.1: Images of tracer particles in concentrated suspension.

The positions of tracer particles in the images can be determined with state-of-
the-art image analysis software. Subsequently, the positions of the tracer particles in
the second image are correlated with the positions of the tracers in the first image by
calculating the displacement vectors(∆x;∆y).

Figure 3.2 shows the set of correlation vectors for the image pair of figure 3.1.
At this point it is important to note that only the auto-correlation vectors (thick lines)
contain information about self-diffusion, since they represent displacements of in-
dividual particles. The cross-correlation (dashed) vectors have no contribution to
self-diffusion and only comprise information about the spatial distribution of tracer
particles over the window of observation. The main problem is to discriminate be-
tween auto- and cross-correlation vectors with the objective to eliminate the cross-
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D y
D x

Figure 3.2: Correlation vectors(∆x;∆y) for the images of figure 3.1.

correlation contributions. As described in chapter 2 this can be achieved statistically
by determining the correlation vectors for a large ensemble of image pairs (at constant
time interval∆t) and collecting all vectors in a histogram. A characteristic example
is given in figure 3.3, representing data from an experiment in our counter-rotating
geometry. The camera is looking along the velocity gradient (y) axis, so that the
plane of view is thex-z-plane. Projections along the axes of the 3D-plot are included
to accentuate the shape of the peak.
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Figure 3.3: Histogram of correlation vectors(∆x;∆z) for an ensemble of 8000 im-
ages (̇γ∆t = 0:72 andφ = 0:30); the units of the displacement axes (∆x and∆z) are
pixels and the vertical axis represents the probabilityP in arbitrary (non-normalized)
units. The contours of the projections along both axes are shown as well.
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The peak in figure 3.3 consists of all auto-correlation vectors (thick lines in fig-
ure 3.2) which are relevant to this study, while the noisy background is due to the
cross-correlation vectors (dashed). In other words, the peak contains the desired in-
formation about the motion of tracer particles. In particular its position represents the
averagedisplacement of tracers during the correlation time step∆t. This property is
used in Particle Image Velocimetry (PIV), a technique which is nowadays frequently
employed in experimental fluid dynamics to measure the velocity profiles of com-
plicated flow fields (see e.g. Westerweel, 1993; Adrian, 1991). In addition to this
well-known feature, the width of the correlation peak is a measure for the size of
fluctuationsin the particle displacements during time step∆t, which are the signature
of diffusion on the particle level. Hence the width of the correlation peak is the quan-
tity of interest for studying shear-induced self-diffusion. This idea forms the basis of
our correlation technique

-100 -50 0 50 100
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P z( )D
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Figure 3.4: Reduced histogram of figure 3.3, revealing the Gaussian nature of the
particle displacements in the vorticity direction (∆z) for an ensemble of 8000 images
(γ̇∆t = 0:72 andφ= 0:30); the curve shows the non-linear fit of the data with eq. 3.1;
units of the displacement axis (∆z) are pixels (particle radiusa= 31pixels ) and the
vertical axis represents the probabilityP in arbitrary (non-normalized) units.

As emphasized by the contours of the projections in figure 3.3, the peak width is
strongly amplified in the∆x-direction. This is caused by the convective shear flow,
because tracer particles on different stream lines experience different∆x displace-
ments in the shear flow. Such a convective contribution does not exist in the vorticity
(z) direction, where particle motion is purely the result of fluctuations. Neglecting
the displacements in the∆x-direction, which are obscured by the convection, we can
obtain accurate information about the∆z-fluctuations by summing the data along the
∆x-axis. Such a summation procedure results in the histogram of figure 3.4 which
represents the probability of encountering a certain∆z value in the image ensemble.
It was shown in chapter 2 that the peak in figure 3.4 should have a Gaussian shape
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in the∆z-direction, if the particle fluctuations behave diffusively (see equations 2.15
and 2.20):

P(∆z) =

�
1�
����∆z
H

����
�
�
�

C+B �exp

�
� ∆z2

2 σ2
z

��
(3.1)

with H the size of the image in thez-direction and

σ2
z = 2 Dzz∆t (3.2)

Dzz being the diffusion coefficient in the vorticity direction.B andC both are func-
tions that depend on the time step∆t and on experimental parameters like image size,
depth of focus, tracer concentration and particle detection efficiency of the image
analysis procedure. For fixed experimental conditions,B has a constant value.C on
the other hand represents the cross-correlation contribution to the histogram and is a
function of the distribution of the tracer particles. To be more specific,C depends on
P2(∆x;∆t), the chance of finding a particle at a certain positionx+∆x, while another
particle resided at any possible positionx a time∆t earlier. For∆t = 0, this function
matches the well-known pair distribution functiong(r).

Because in generalg(r) can be expected to be non-uniform –particularly at high
volume fractions where particles are not necessarily distributed randomly– the func-
tional shape ofP2(∆x;∆t) is a priori unknown. Therefore the exact theoretical shape
of the curve in figure 3.4 is also uncertain.

For the non-counter-rotating Couette set-up this theoretical complication could
be evaded. It was shown in chapter 2 that symmetry considerations are sufficient
to eliminate the unknown functionC. The key feature in the derivation is the fact
that, because of the convective shear flow, the auto-correlation peak was always fully
located in the half-plane∆x > 0 of figure 3.3. Therefore the half-plane for∆x < 0
only contained cross-correlation contributions, which could be subtracted from the
points with∆x> 0, using the flow symmetry. In this case equation 3.1 simplifies to

P(∆z) = B �
�

1�
����∆z
H

����
�
�exp

�
� ∆z2

2 σ2
z

�
(3.3)

When making use of the advantage of counter-rotating flow, however, the plane
of focus is located around the plane of zero velocity. Within the depth of focus of
the camera optics, some of the tracer particles will experience flow displacements to
the left and others will travel to the right. Consequently, the peak of figure 3.3 is
located around the origin and symmetry arguments can no longer be used to subtract
the cross-correlation contributions, since it would eliminate (part of) the desired auto-
correlation peak as well. In this case, a more detailed analysis of the role ofP2(∆x;∆t)
is required.
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The influence ofP2(∆x;∆t) on the shape of functionC in equation 3.1 is weak-
ened by an averaging integral (equation 2.15) as result of the finite depth of focus
of the camera optics. The two dimensional image is in fact the projection of a three
dimensional volume element, its size being defined by the depth of focus. Thus any
possible spatial structure in the particle distribution functionP2 is smeared out by the
projection.

We have used a robust experimental analysis to clarify the effect of volume av-
eraging on the observed shape of the cross-correlation contribution. To this purpose
the functional shape ofC was determined for∆t = 0, i.e. whenP2(∆x;∆t) matches
g(∆x). The cross-correlation vectors between different particles in every image were
calculated and the collected data were plotted in histograms like figure 3.3 and 3.4.
These histograms showed that within experimental errors no spatial structure could
be detected. The distribution appeared to be random, most probably due to the vol-
ume averaging integral that represents projection. If no structure can be found for
g(∆x) at ∆t = 0, it is to be expected that this will be even less likely forP2(∆x;∆t) at
finite values of∆t.

Consequently, in our counter-rotating experiments we could safely apply the as-
sumption ofC being constant, so that equation 3.1 could be used directly to fit the
experimental data of histograms like figure 3.4 and determine the width of the auto-
correlation peak.

The single relevant timescale of the experiment isγ̇∆t: the process stops when the
flow is stopped and Brownian motion is negligible. Furthermore the only important
length scale is the particle radiusa. Thus, dimensional analysis requires thatσz in
equation 3.2 obeys the following scaling (Ecksteinet al., 1977; Leighton & Acrivos,
1987a):

σ2
z

a2 = 2 D̂zz γ̇∆t (3.4)

whereD̂zz is the dimensionless diffusion coefficient, scaled byγ̇ a2. D̂zz can be ex-
pected to depend on the particle volume fractionφ. These simple scaling arguments
have been confirmed by several experimental studies (chapter 2, Phan & Leighton
(1993); Leighton & Acrivos (1987a)). One of the most remarkable differences be-
tween shear-induced diffusion and Brownian diffusion is the fact that the former is
independent of the viscosity of the suspending fluid.

The correlation technique can be used to investigate the nature of the particle
motion over a range oḟγ∆t values. In regions where the scaling of equation 3.4
applies, the motion is diffusive and the dimensionless diffusion coefficientD̂zzcan be
calculated directly from the slope in aσ2=a2-γ̇∆t-graph. This is a powerful feature of
the method, since the self-diffusion can thus be investigated on different timescales
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as opposed to the technique employed by Leighton & Acrivos (1987a) and Phan &
Leighton (1993) where single points after relatively long times were used to derive a
diffusion coefficient without actually checking the diffusive scaling.

When the system is viewed from the vorticity (z) direction, similar graphs are
obtained and relations analogous to equations 3.3 and 3.4 can be derived for the
width of the auto-correlation peak in the∆y-direction,σy, and accordinglyD̂yy can
be measured.

3.3 Experimental work

The technique described in the preceding section has been successfully applied and
tested in a Couette geometry in chapter 2. Due to geometrical restrictions, the range
of γ̇∆t in those experiments was limited from 0.05 to 0.6. For larger strain values,
the shear flow moved too many particles out of the viewing window for obtaining
reliable statistical information. In order to circumvent this problem and to increase
the experimentally accessible range ofγ̇∆t, a counter-rotating geometry was built,
in which the images could be taken close to the plane of zero velocity. In this was
particles were kept within the field of view for much longer times.

3.3.1 Apparatus

Our experimental set-up was designed with a cone-plate geometry, since it is charac-
terized by a constant shear rate even if the fluid is non-Newtonian. The value of the
important scaling parameterγ̇ could thus be controlled more accurately and collective
migration as a result of gradient diffusion could be neglected. In literature, the impor-
tance of gradient diffusion in cone-plate and plate-plate geometries has been subject
of debate for some time (e.g. Chapman & Leighton, 1991; Chowet al., 1994; Krish-
nanet al., 1996). Conclusive evidence was not available at the moment of designing
our apparatus. Presently, the argument seems to develop in favour of the existence
of outward particle migration in cone-plate flow due to curvature effects (Krishnan
et al., 1996; Morris & Boulay, 1999). However, significant particle migration could
not be observed in our cone-plate geometry, possibly due to the small curvature of
the wide radius design.

Figure 3.5 shows a sketch of the apparatus, which is an adapted version of the
rheoscope developed by de Haaset al. (1998) to study the deformation of vesicles
in shear flow. The flow cell units were connected to independent drive units (step
motors with RS100 control, designed and built by Eltromat) via precision fittings and
play-free Oldham couplings. The units were further supported by aerostatic bearings
so that extremely high accuracy could be achieved in the alignment of the flow cell.
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Figure 3.5: Design of counter-rotating cone-plate geometry.
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In our experiments we made use of a steel cone and a glass plate for optical access
from different directions. The cone-plate configuration (with the extrapolated cone
intersecting the plate at the rotational axis) was only present over a limited range of
the radius, from 8.5 to 11.5 cm. This geometry was chosen in order to restrict the
sample volume, while maintaining a small cone angleθ = 2Æ and a sufficiently large
gap size to minimize wall effects for non-colloidal particles ofO(100µm) (3.0 mm
at the inner edge and 4.0 mm at the outer edge of the truncated cone). The cone
and plate were both polished with extreme care, so that vertical variations during a
full rotation were only about 5µm for both cone and plate. The temperature was
controlled with a thermostat unit, which was brought into contact with the rotating
steel cone through a thin water layer.

Numerical calculations were performed to check the influence of the cone edges
on the steady state flow field in the tangential direction. The calculations led to an
adaptation in the design: the inner section of the cone unit was made flat in order
to minimize the influence of the sharp inner edge. It was shown that with this lay
out the flow was not significantly affected for both Newtonian and power-law fluids.
The shear ratėγ under the center of the cone deviated no more than a few tenths of a
percent from the desired cone-plate value.

The original idea was to have visual access to an observation window under the
cone from two directions, so that all components of the diffusion tensor could be mea-
sured under exactly the same flow conditions. However, it turned out that measure-
ments from position B in figure 3.5 were impossible. In spite of extensive attempts
to optimize the refractive index matching of our suspensions, the optical penetration
depth could not be increased to more than 3 mm, while about 7 mm would have
been necessary for reliable measurements from position B (see also section 3.3.2).
An alternative approach was therefore taken to measure diffusion in thex�y�plane:
the cone was lowered up towards the glass plate and the outer Couette gap between
cone and plate element was used for experiments, with camera position C. The wide-
radius Couette gap has inner and outer radiiRi = 117:3 mm andRo = 121:6 mm. The
height of the fluid in the gap was chosen to be 8 mm, so that the influence of the
cone-plate section on the velocity profile minimized, which was confirmed by nu-
merical calculations. The mechanical precision of the flow elements was very high in
the outer gap as well, the variations in gap width being no larger than 10µm during
a full rotation. In essence we have used the same geometry for the measurements
of D̂yy as described in chapter 2, but the counter-rotating character of the apparatus
dramatically increases the maximum correlation time.

The conversion from rotational speeds to shear rates is based on standard equa-
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tions for cone-plate and Couette rheometry:

γ̇A =
Ω
θ

= 3:0�Ω (3.5)

γ̇C =
2π
60

R2
o+R2

i

R2
o�R2

i

Ω = 2:89�Ω (3.6)

the indices indicating the viewing position andΩ [rpm] being the relative rotational
speed of cone and plate. For the Couette system, equation 3.6 represents the shear
rate γ̇C at the position in the gap where the tangential velocity equals zero, since the
images are collected at this location:
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i

�1
2

(3.7)

The drive units are capable of producing shear rates ranging from 3�10�3 to 30 s�1,
but all experiments were carried out forγ̇ between 0.1 and 2.0 s�1.

Since both the initial positions and displacements of the tracer particles are avail-
able from image analysis and correlation procedures, for the Couette geometry (ob-
servation window in thex� y�plane) it is possible to determine the velocity field
of the macroscopic shear flow experimentally from the data. The measured values
were higher than the Couette predictions of equation 3.6 for Newtonian fluids. For
the study presented in this paper, we have used the experimental values for the shear
rate, since they accurately represent the actual shear rate at the observation location
in the gap. The procedure to measure the velocity field is explained and discussed in
detail in chapter 5.

3.3.2 Materials

Experiments were performed with suspensions of PMMA (polymethylmethacrylate)
particles (produced by ICI, class 4F) dispersed in a fluid consisting of demineralized
water (9.2 weight-%), zinc-II-chloride (13.4%) and Triton X-100 (77.4%), follow-
ing the recipe of Krishnanet al. (1996). The fluid was Newtonian with a viscosity
of 3.4 Pa s at 23ÆC and matched both the density (1.172 kg/l) and refractive index
(n25

D = 1:491) of the particles. In our attempts to measure from camera position B
(fig. 3.5), we have tried to improve the refractive index matching by changing the
fluid composition. However, we never obtained penetration depths larger than 3 mm.
Most likely this is due to small variations in refractive index between different par-
ticles or even within particles. We have noticed that changes in the fourth decimal
of the refractive index are sufficient to cause significant blurring effects of the video
images.
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The particles were sieved repeatedly to obtain fairly monodisperse particles with
a diameter of 90�15µm. Spheres with air bubbles were removed by means of density
segregation. The particles were suspended in a water-glycerol mixture of a slightly
lower density and the creaming fraction of light particles was removed. A small frac-
tion of the particles, typically 0.2 volume-% of the suspension, was coloured with
liquid fabric dye (RIT) to serve as tracer particles in the transparent suspension; no
changes could be found in their density after colouring. The suspensions were ho-
mogenized by gently tumbling the components overnight at low rotational speed.
Then they were set to rest to let the small quantity of air bubbles disappear. Measure-
ments were performed for particle volume fractionsφ of 20-50%.

3.3.3 Image acquisition and analysis

As shown in figure 3.5 the transparent plate provided optical access to the suspension
volume from position A, which was used to measureD̂zz. From position C we entered
the suspension through the free surface in order to findD̂yy. A digital CCD camera
(JAI M-10, 768 by 582 pixels, 25 images per second) was mounted with optics to
obtain a view window of 1.10 by 0.83 mm (determined by calibration) and connected
to a PC. Illumination was arranged with a fiber optic halogen illuminator (Schott
KL1500) that provided optimal contrast in the images.

The video images were stored directly on the PC through a frame grabber (Ma-
trox Pulsar) that was operated using a special software tool (Hispa), which enabled
accurate and controlled image acquisition of series of up to 200 images at discrete
time intervals∆t of 40ms (video rate) and multiples thereof. Since Hispa offered the
possibility of automatical repetition of the acquisition procedure, the total number of
images in a run was limited only by the hardware storage capacity of the computer
system. In our case, runs were made of up to 8000 images.

All images were then analyzed with a commercial software package for image
analysis (Optimas). Basic analysis tools provided the means to identify dark objects
and extract information about their properties. These properties –size, sphericity and
blackness– were compared to pre-set criteria in order to decide whether the object
was a tracer particle. If so, its position (gray value weighted center of mass) was
stored in a data file for correlation purposes. The accuracy of the image analysis
procedures was checked by changing the settings of the different analysis steps and
monitoring the result. The error in the particle positions was estimated to be circa
0.2 pixels under our experimental conditions. The sub-pixel accuracy is the result of
averaging over any pixels.
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3.4 Results and discussion

The data files with particle positions were used as input for the correlation procedure.
As described in section 3.2 (see also chapter 2 for detailed description) the correlation
vectors were calculated for all possible image combinations and grouped according
to the correlation timėγ∆t between images.

3.4.1 Correlation results

The resulting sets of correlation vectors for all values ofγ̇∆t were collected in his-
tograms (e.g. figure 3.4), which were fitted with a non-linear least square method
to equation 3.1. The peak widthσz obtained from the fitting was plotted against the
strain γ̇∆t in a σ2

z=a2� γ̇∆t�graph in order to check the validity of scaling equa-
tion 3.4.
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Figure 3.6: Scaling of the average squared displacement of the particlesσ2
z=a2 with

dimensionless timėγ∆t for φ = 0:30; (a) contains the raw fit data and(b) the results
of the weighted average.

At each particle volume fraction, this procedure was repeated for different values
of γ̇ and∆t, thus covering the entire range ofγ̇∆t between 0.03 and 3.5. Figure 3.6a
shows the entire collection of data points forφ = 0:30. The error bars of the individ-
ual points represent the errors of the non-linear fit. These statistical error estimates
represent the scatter between different experimental runs very well. Since for most
γ̇∆t�values several data points were collected at different shear ratesγ̇, standard sta-
tistical manipulation of the data was appropriate. Figure 3.6b shows the resulting
weighted averages (with 1=error2 as weight factor) and their associated standard de-
viations forφ = 0:30.

The figure displays a number of interesting features. It distinctly shows that
for large values oḟγ∆t the statistical information becomes less accurate, since less
and less tracer particles remain within the field of view during the entire correlation
time. Although the counter-rotating design strongly increased the range of accessi-
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ble timescales and theoretically enables experiments at very large strain values, the
γ̇∆t�range was in practice limited by the number of images that could be stored and
analyzed on the computer. In our case, the upper limit ofγ̇∆t was circa 3:5. In-
creased hardware storage capacity and image analysis speed would extend the range
of accessible strain values and decrease the error bars.

Figure 3.6b also shows linear scaling over most of the range, which is the finger-
print of diffusion (see equation 3.4). In this regime, roughly forγ̇∆t > 0:7, the data
can be fitted linearly and the diffusion coefficient can be calculated directly from
the slope of the fitted line, the dimensionless coefficientD̂zz being half the slope.
Figure 3.7 shows the experimental data in the vorticity direction and fitted line for
various particle volume fractions.
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Figure 3.7: Scaling of the average
squared displacement of the parti-
clesσ2

z=a2 with dimensionless time
γ̇∆t for different volume fractions
(a) φ = 0:20, (b) φ = 0:45 and(c)
φ = 0:50; the lines represent the lin-
ear fit to the data points at long
times.

Measurements in the velocity gradient (y) direction were slightly more compli-
cated, because the images had to be taken through the free surface in the Couette
gap. In order to eliminate surface effects, the camera optics was focused on a loca-
tion 1.5-2.0 mm below the surface. With a particle diameter of 100µm this should
be sufficiently deep. In some experimental runs we deliberately focused on the par-
ticles at the suspension surface to investigate the surface effects and a significantly
larger diffusion coefficient was found in those runs. In addition to the surface dif-
fusion, measurements at the highest volume fractions are complicated by surface
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”roughening” as particles are pushed out of the suspension by strong hydrodynamic
interaction forces. Thus the image quality deteriorates and the average number of
detected tracer particles per image decreases, so that statistical information becomes
less accurate. Nevertheless we have been able to obtain reliable results for diffusion
in the y�direction. In figure 3.8 the scaling of the average squared displacement
σ2

y=a2 is presented for different volume fractions together with the linear fit to the
diffusive regime at long times. In comparison to figure 3.7, the onset of diffusion in
they�direction occurs for larger values ofγ̇∆t. The range of the linear fits has been
adapted accordingly.

Figure 3.8: Scaling of the average
squared displacement of the parti-
clesσ2

y=a2 with dimensionless time
γ̇∆t for different volume fractions
(a) φ = 0:20, (b) φ = 0:35 and(c)
φ = 0:45; the lines represent the lin-
ear fit to the data points at long
times.

3.4.2 Diffusion coefficients

Within experimental errors the diffusion coefficient (slopes in figure 3.7 and 3.8)
is constant down tȯγ∆t � 1, which implies that the concept of shear-induced self-
diffusion is applicable over a large range of timescales. In particular the lower bound-
ary of validity is rather surprising. Within the framework of the collision model of
Leighton & Acrivos (1987a) it was generally believed that diffusive behaviour could
only be attained on experimental timesγ̇∆t � 1, i.e. for times large compared to
the assumed collision time in simple shear flow, so that a particle has experienced
several interactions with its neighbours. The early onset of diffusion is the result of
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ensemble averaging. As soon as all particles have experienced a single displacement
step, the correlations with previous moments in time are lost, since the direction of
the displacement is random due to the random starting conditions of each interaction.
As soon as the correlation has vanished, diffusive motion can be observed, although
individual tracer particles have not yet undergone multiple displacements. The fact
that characteristic time of the diffusion is of the orderγ̇∆t = 1 does therefore not
automatically imply that mechanistic (collision based) models are inadequate.

For small values oḟγ∆t, the curves in figures 3.7 and 3.8 are non-linear, so that
diffusive motion cannot be assumed in this regime. Our previous experiments were
carried out foṙγ∆t varying from 0.05 to 0.6, where in the current experiments linear-
ity has not been reached. Within experimental accuracy of the former measurements
it seemed appropriate to fit the data linearly, thus obtaining values for the diffusion
coefficients. The present study suggest that in this way we have underestimated shear-
induced self-diffusion. This is illustrated by figure 3.9. In the left graph, the data for
φ = 0:45 of figure 3.7c are fitted linearly over two different ranges ofγ̇∆t. The dot-
ted curve represents the linear fit forγ̇∆t between 0.1 to 0.6, consistent with the
procedures in chapter 2, the solid curve depicts the linear fit only over long times,
γ̇∆t > 0:7, analogous to figure 3.7.
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Figure 3.9: Comparison of the data of chapter 2 to the results of the current study.
(a) shows two linear fits forφ = 0:45, dashed line (- - -) foṙγ∆t = 0:10� 0:60,
solid line (—) forγ̇∆t > 0:7. (b) contains the associated diffusion coefficients in the
vorticity direction as a function ofφ; (�) and (Æ) represent data from this study, of
respectively the full and limited fit, (�) denote earlier results presented in chapter 2.

In figure 3.9b the short-time linear fits of our current data in thez�direction
are compared to the diffusion coefficients reported in chapter 2. Leaving out the
data for 20%, which were not very reliable, the figure shows that the previous study
indeed underestimated the diffusion coefficient by up to 30% at the highest volume
fractions. At the time of that study, we noticed deviations from the literature data of
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Phan & Leighton (1993), but the differences were not very large in comparison with
the significant experimental errors and the scatter in literature data. With our new
results in mind, however, we must conclude that the accessible range of timescales in
the Couette experiments of chapter 2 was insufficient to capture the onset of shear-
induced self-diffusion.

Figure 3.10: Coefficients of shear-induced self-diffusion as measured by various
researchers in(a) the velocity gradientD̂yy and (b) the vorticity D̂zz direction as
a function of particle volume fractionφ; (M) represent data of Phan & Leighton
(1993), (Æ) of Leighton & Acrivos (1987a) and (�) were measured in this study.

All available experimental data for shear-induced self-diffusion as a function of
volume fractionφ are combined in figure 3.10. The results of chapter 2 were left out
for the reason explained above. Even if the experimental errors are significant, we can
safely say that there is fair agreement between the results of the various experimental
methods with different systems. In particular our results are in very good agreement
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with the most recent data of other researchers, i.e. Phan & Leighton (1993). The
results of Leighton & Acrivos (1987a) deviate somewhat from the other two studies,
but in that study the authors had problems with crystallization of the suspending fluid
and this could have affected their results.

The characteristic timescalėγ∆t � 1 above which we determine diffusion co-
efficients –and which was also used by Foss & Brady (1999)– has recently been
questioned by Marchioro & Acrivos (2000). In their Stokesian Dynamics simula-
tions these authors found that linear (diffusive) scaling could only be observed for
γ̇∆t > 5 in the reported cases. Unfortunately, even in our counter-rotating set-up
we are unable to check this claim experimentally, because too many tracer particles
leave the observation window at long times. However, we can compare our data
to the results of Phan & Leighton (1993), who performed their measurements over
even longer times (γ̇∆t � 10, although exact numbers cannot be reconstructed) and
calculated the diffusion coefficient by assuming a straight line through the origin in
graphs like our figure 3.7. On these long times the offset can indeed be neglected
without problem. The agreement between our data and the long-time experiments
is very suggestive: it is hard to understand that the slope of our linear fit could be
incorrect, while extrapolation of this line accurately intersects the data points of Phan
& Leighton (1993).

Figure 3.10 reveals some intriguing trends. First of all the dimensionless diffu-
sion coefficient in the velocity gradient direction (D̂yy) is about a factor 1.5 larger
than in the vorticity direction (̂Dzz). This is in agreement with the theoretical re-
sults of Brady & Morris (1997), who predict shear-induced self-diffusion coefficients
in concentrated suspensions by analyzing the microstructure of the suspension, i.e.
the contact values of the pair distribution functiong(r). On the other hand the ex-
perimentally found anisotropŷDyy=D̂zz for concentrated suspensions is significantly
smaller than the results of theoretical models for dilute suspensions that attribute
shear-induced diffusion to the symmetry breaking of particle collisions due to parti-
cle roughness (Da Cunha & Hinch, 1996) or to the presence of a third particle (Wang
et al., 1996). Both models predict the anisotropy to be circa 10 and the discrepancy
implies that the behaviour of concentrated suspensions deviates strongly from the
dilute limit.

Secondly, in figure 3.10 there is clear experimental evidence that both diffusion
coefficients do not grow monotonically with volume fraction, as has been suggested
by the measurements of Leighton & Acrivos (1987a) and by the theoretical work of
Brady & Morris (1997). Up to volume fractions of circa 0.35 the diffusion coeffi-
cients increase rapidly. Above this volume fraction they level off and even exhibit a
tendency to go down for the highest volume fractions of 0.5 and 0.55, although this
final decrease can not be concluded beyond experimental doubt. The measured dif-
fusion coefficientD̂yy at 45% lies somewhat higher than the trend in our experiments
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suggests and underlines the decrease in diffusivity at 50%.
In their theoretical study Brady & Morris (1997) have argued that shear-induced

self-diffusion should scale as the product of the velocity fluctuations (γ̇ a) and the size
of the displacements (O(a)). Since in their model the frequency of particle collisions
is directly associated with the pair distribution function at contact, it should increase
strongly with volume fraction, thus giving rise to growing self-diffusion coefficients
as well. Our experimental results however reveal a different qualitative behavior.
We have no explanation for this difference, but apparently one of the above scaling
arguments is oversimplified. It could very well be that the contact value of the pair
distribution function,g(2), is insufficient to describe the hydrodynamic influence
of the many particle problem for modeling shear-induced diffusion, although it has
proven its usefulness in modeling suspension viscosities.

Stokesian Dynamics simulations (e.g. Yurkovetsky,1998) have generally sup-
ported the theoretical ideas. However, recent numerical calculations of Foss & Brady
(1999) and Marchioro & Acrivos (2000) have shown a tendency forD̂yy to level off
at high concentrations, even if it is hard to draw strong conclusions on basis of their
work, especially sincêDzz does not exhibit the same qualitative behaviour. The dif-
fusion in the vorticity direction clearly increases withφ in both studies.

3.5 Conclusions

In combination with a counter-rotating flow geometry the correlation technique has
proven to be a powerful method to study shear-induced self-diffusion of concentrated
non-colloidal suspensions. Visual observation of tracer particle positions in a refrac-
tive index matched suspension at well-controlled time intervals enabled a detailed
analysis of the particle motion. Statistical tools could be applied to accurately char-
acterize this motion. The most important feature of the method is the fact that in
the counter-rotating cone-plate geometry used in this study the dimensionless exper-
imental timeγ̇∆t could be varied from circa 0.03 to 3.5, so that different timescales
could be probed. The upper boundary of theγ̇∆t range is only limited by computer
capacity for image storage and analysis.

The onset of self-diffusion could be observed and the associated long-time diffu-
sion coefficients were determined as a function of particle volume fraction. The di-
mensionless diffusion coefficientŝDyy andD̂zzwere in good agreement with previous
results of Leighton & Acrivos (1987a) and Phan & Leighton (1993) who employed a
different technique based on the analysis of the motion of single tracer particles over
very long times (̇γ∆t � O(10)). The results significantly differed from our previous
results in non-counter-rotating Couette flow (chapter 2),but these discrepancies could
be fully attributed to the limited range ofγ̇∆t in those experiments (0.05-0.60).

The onset of diffusion occurs at a dimensionless timeγ̇∆t of O(1), as could be
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expected, since 1=γ̇ is the governing timescale in shear flow. The onset changes
with particle volume fraction, shifting to shorter times at higher concentrations. In
the velocity gradient direction, the diffusive regime is reached for larger strain values
than in the vorticity direction. Recent numerical results (Marchioro & Acrivos, 2000)
suggest that much longer times are needed to reach diffusive motion. Although we
are unable to prove otherwise in our set-up, the agreement with the measurements of
Phan & Leighton (1993) would be very peculiar if the regime of the linear fit in our
experimental data is incorrect.

The measurements provide additional experimental evidence about the remark-
able behaviour of the diffusion coefficients as a function of particle volume fraction
φ. In contrast to recent theoretical predictions of Brady & Morris (1997) and numer-
ical results of Foss & Brady (1999) and Marchioro & Acrivos (2000), experimental
self-diffusion coefficients in the velocity gradient and vorticity direction, resp.D̂yy

andD̂zz, do not increase monotonically as a function ofφ. Up to volume fractions of
35% the diffusion rises strongly and then it levels off and even shows the tendency to
go down again above 45%.

Furthermore, the experimentally determined values of the diffusion coefficient in
the velocity gradient direction (̂Dyy) are significantly larger than in the vorticity di-
rection (D̂zz), the anisotropy being circa a factor 1.5.

The research described in this paper was supported by the Foundation for Funda-
mental Research on Matter (FOM) in the Netherlands.
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Chapter 4

Self-Diffusion and Rheology:
Timescales and Particle Displacements�

Abstract

The shear-induced diffusion and rheology of concentrated suspensions of non-
colloidal hard sphere have been studied experimentally. Both properties are directly
related to the particle configuration in the suspension and the combined results pro-
vide an interesting physical picture. The projection of the trajectories of individ-
ual particles on the vorticity(z)-velocity(x)-plane were determined through particle
tracking. For a quantitative analysis of the particle displacements we measured the
evolution of the ensemble averaged displacements as a function of time. Statistical
analysis revealed two diffusion regimes. For large strain values (γ̇∆t > 1) long-time
self-diffusion was observed. The associated diffusion coefficientD̂∞ is in excellent
agreement with literature data on shear-induced self-diffusion. On very short times
(γ̇∆t � 1) a novel diffusive regime was discovered, characterized by a diffusion co-
efficientD̂0, which is significantly smaller than̂D∞ and grows monotonically with
φ. D̂0 is detected for timescales on which the particle configuration has not changed
significantly and thus it must represent the fluctuating motion of particles inside the
’cage’ formed by their nearest neighbours. Dynamic viscosity measurements in a
controlled stress rheometer revealed that the viscoelastic response of the suspension
is determined by the deformation as well. At small strain amplitudesγ0 < 1, the
response is linear and the dynamic viscosityη0 is in good agreement with the high
frequency limitη0

∞ for colloidal hard sphere suspensions. Aroundγ0 = 1 the ’cage’
around a particle is deformed and a shear-induced microstructure is built. This
leads toO(a) displacements of the particles and the viscoelastic response becomes
strongly non-harmonic.

�This chapter has been submitted toJ. Chem. Phys.as ”Shear-induced Diffusion and Rheology of
non-Colloidal Suspensions: Timescales and Particle Displacements” by V. Breedveld, D. van den Ende,
R.J.J. Jongschaap and J. Mellema (2000)’
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4.1 Introduction

Shear-induced diffusion is an important phenomenon in the field of suspension rhe-
ology. It is one of the basic transport processes in concentrated suspensions and has
significant influence on the macroscopic flow behaviour of non-colloidal suspensions
(see e.g. Acrivos, 1995). The underlying mechanism of shear-induced diffusion is
formed by the velocity fluctuations of individual particles due to the changing con-
figuration of all other particles. The macroscopic flow drives particles on adjacent
streamlines towards each other and because of excluded volume effects the particles
are forced to leave their streamlines. In concentrated suspensions the excluded vol-
ume effects result in net particle displacements. Although in principle hydrodynamic
interactions are of deterministic nature, the changing configuration causes diffusive
behaviour in concentrated suspensions.

The driving force of shear-induced diffusion differs from the more familiar con-
cept of Brownian diffusion, which is driven by thermal forces and plays an important
role for smaller, colloidal, particles. Moreover, shear-induced diffusion occurs at
very low Reynolds numbers, so that inertia is insignificant as opposed to the case of
particle dispersion in turbulent flows.

Since the experimental work of Leighton & Acrivos (1987a,b) shear-induced dif-
fusion has been studied experimentally, numerically and theoretically by various re-
search groups, both on the level of self-diffusion and collective or gradient diffusion
(for a review see Davis, 1996). In this paper we restrict ourselves to self-diffusion,
which describes the velocity fluctuations of individual particles.

Experimentally, shear-induced self-diffusion has been studied with a number of
different techniques. Ecksteinet al. (1977) have introduced the method of observing
long-time displacements of a single tracer particle in a Couette flow by recording
its position after each full rotation. The technique was improved by Leighton and
coworkers (Leighton & Acrivos, 1987a; Phan & Leighton, 1993). They also intro-
duced measurements of diffusion in the vorticity (z) direction.

In chapter 2 and 3 we have introduced another technique, which monitors the
motion of an ensemble of tracer particles over much shorter times and extracts shear-
induced diffusion coefficients by means of spatial correlation procedures. These mea-
surements were also performed in a steady shear situation and reveal that for strain
values roughlẏγ∆t > 1 (γ̇∆t being the relevant dimensionless time) the particle mo-
tion becomes diffusive. The latest experimental studies in shear flow (chapter 2 and
3; Phan & Leighton (1993)) are in good agreement and have provided a consistent
picture of the experimental values of the long-time diffusion coefficients.

Now that reliable experimental data are available on long-time shear-induced dif-
fusion coefficients, it seems feasible to investigate particle motion in sheared non-
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colloidal suspensions in more detail. Our technique offers the possibility to study the
evolution of ensemble averaged particle displacements over a wide range of strain
(0:03< γ̇∆t < 3:5). Thus we can focus on the regime where the transition to diffusive
motion occurs (̇γ∆t � 1). In addition the nature of particle motion for even smaller
strain values can be studied. Since shear-induced self-diffusion in non-colloidal hard-
sphere suspensions is induced by the changing configuration of the particles –the
spatial distribution determines the velocity of individual particles under shear–, the
motion of individual particles probes the underlying microstructure.

Experimentally we have investigated particle motion and its relevant timescales
in two different ways. Characteristic particle trajectories are presented in section 4.3.
The trajectories have been determined by means of particle tracking and enable direct
observation of the motion of individual particles. These particle paths are useful in
developing a qualitative picture of the particle motion.

The trajectories, however, are not very suitable to collect quantitative information
about the particle displacements, since the method is laborious and a large number
of trajectories is required for accurate statistical analysis. Detailed information about
the ensemble averaged displacements was therefore obtained with our correlation
method, which was originally developed to measure long-time self-diffusion coeffi-
cients (chapter 3). In section 4.4 the ensemble averaged data are evaluated in search
for the characteristic timescales of the particle motion.

Not only self-diffusion, but also rheology is governed by particle positions, of-
ten represented by the particle distribution function. In a non-colloidal suspension of
hard spheres without interparticle forces in Stokes flow, the net hydrodynamic force
on any particle must be zero (see e.g. Brady & Bossis, 1988). In that case the stresses
and viscosities are determined directly by microstructure. In section 4.5 we report
on steady shear and dynamic rheometry. Similar experiments have been reported by
Gadala-Maria & Acrivos (1980) and Gondretet al. (August 18-23, 1996); we have
further explored the phenomena which they observed for our system. By combining
the self-diffusion and rheological measurements for our suspensions a coherent pic-
ture arises. In section 4.6 we combine the results in an attempt to provide a consistent
physical interpretation of our observations.

4.2 Materials and methods

For all experiments reported in this paper we made use of the experimental system
described in chapter 2, a refractive index and density matched suspension of PMMA
particles suspended in a fluid mixture of demineralized water, zinc-II-chloride and
Triton X-100. The suspending fluid was measured to be Newtonian over the entire
range of shear rates that could be covered by the rheometer (up to 100 s�1) at a vis-
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cosity of 3:4 Pa s (23ÆC). The particles (produced by ICI, class 4F,ρ = 1:172 g=ml)
were sieved repeatedly to obtain a well-defined size fraction of diameter 90�15µm.
The sieved particles were density segregated to remove the particles with air-bubbles.
A small fraction of the particles was then colored with fabric dye (Rit, CPC Interna-
tional) and used as tracer particles to visualize particle motion.

Correlation experiments were performed to measure the ensemble averaged par-
ticle displacements and subsequently extract the long-time self-diffusion coefficients.
The technique is based on spatial correlation of tracer particle positions in sequences
of video images; for a detailed description of our experiments in a counter-rotating
cone-plate apparatus we refer to chapter 3. In the current chapter we reanalyze the
results of the original study with the aim to collect detailed information about the
microscopic nature of the diffusion process.

The video images used for the diffusion experiments could also be used to apply
particle tracking. Thus the trajectories of individual tracer particles were determined
over relatively long times. Our image grabbing system, consisting of CCD-camera,
frame grabber and PC, was able to capture sequences of maximally 200 images. The
upper limit was set by the amount of RAM (256Mb) in the frame grabbing PC. The
actual physical length of the sequences –expressed in dimensionless strain units–
depended on the interval time between consecutive images and on the shear rate,
which were both varied. In this study we have collected time series in which particles
could be tracked for as long as 50 strain units (γ̇∆t). Sequences with shorter interval
times were also analyzed to obtain a higher strain resolution.

The tracking procedure consisted of the following steps. First, suitable sequences
were identified, in which a specific tracer particle remained within the camera win-
dow during the entire sequence. The images of these series were then analyzed with a
commercial software package for image analysis (Optimas): the position of the tracer
particle was determined manually by fitting a circular overlay to the particle contour.
The position of the overlay was registered as a measure for the tracer position.

In spite of the software’s sophisticated particle recognition algorithms the track-
ing procedure could not be automated. Not every image was of sufficiently high
quality because of particle overlap and other image distortions. When measuring the
self-diffusion in chapter 3 this effects was unimportant, since the ensemble statistics
were not affected significantly by the odd missing tracer position. Particle tracking,
however, requires accurate knowledge of the particle position at every moment in
time. Omissions in the time series would seriously disrupt the trajectory. By per-
forming the analysis manually even the positions of overlapping tracers could be
determined accurately. As long as a significant part of the particle contour is visible,
precise placement of the circular overlay is relatively easy. Furthermore, automatical
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particle tracking would require a clever algorithm to identify individual particles in
subsequent images, which by eye is a simple task.

In order to determine the experimental errors of the manual particle tracking pro-
cedure, for a number of images the manual outcome was compared to the results of
the automated image analysis algorithm which was employed in the diffusion exper-
iments. The influence of the operator was also checked by having a small sample of
images analyzed by different people. All in all the error in tracer position as mea-
sured with the manual procedure turned out to be no larger than 1 pixel, which was
also the spatial resolution of the placement of the circular overlay.

The rheological properties of the suspensions were characterized using a con-
trolled stress rheometer (Haake RheoStress RS150) equipped with a Couette geome-
try (inner and outer gap radius respectively 20.71 and 21.71 mm). Since the average
particle diameter is 90µm, the gap is on the small side according to the rheological
rule of thumb that a minimum gap size of circa 15 particle diameters is required
for reliable viscosity measurements. As a result, we cannot exclude wall-slip in
our system. Wall-slip would have influenced our rheological experiments, leading
to underestimated viscosity values. However, a Couette geometry with larger gap
was unavailable and we believe that our most important observations, the oscillatory
measurements to be presented in section 4.5 (fig. 4.10), have not been affected by
the limited gap size. This belief is supported by the fact that quantitatively identical
results have been observed by Knipmeyer & Pine (2000) in a wider Couette geometry
with roughened walls where wall slip is unlikely to play a role.

After loading the suspensions we applied pre-shear to eliminate the loading ef-
fects that have been reported by Leighton & Acrivos (1987b) under similar exper-
imental conditions and that have been related to shear-induced gradient migration
across the annular gap. Stress sweeps were then applied to measure the flow curves
and finally frequency sweeps were performed at constant stress values. The details
on the chosen values of stress and frequency are given in section 4.5

4.3 Particle trajectories

Direct visual observation is a natural approach when studying particle motion, es-
pecially for non-colloidal suspensions of 90µm particles that can easily be visual-
ized with standard optics. As described in the previous section, video images were
taken from concentrated refractive index matched suspensions with a small fraction
of opaque tracer particles. Besides the diffusion measurements to be described in the
next section, the images could also be used to reconstruct trajectories of individual
tracer particles.

To this purpose image sequences had to be identified for which tracers remained
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within the observation window for a much longer period than needed for the diffu-
sion measurements. Sequences could be found with particle residence times as long
as 50 strain units. Figure 4.1 shows typical particle trajectories in thex� z�plane
for suspensions of 30 and 50% particle volume fraction. The strain stepγ̇∆t be-
tween consecutive points in the graphs is 0.24 (for particles 3 and 4 in(a) the inter-
val is 0.024). The figure represents the location of the particles on the CCD image
(752x568 pixels). The measured positions were slightly shifted to minimize overlap
of the trajectories and improve clarity. The average particle size (diameter 62 pixels)
is indicated on the left side.

Figure 4.1: Typical particle trajectories in the image window (∆x�∆z-plane) for
volume fractions(a) φ = 0:30 and(b) φ = 0:50; strainγ̇∆t between consecutive
points is 0.24 for all particles, except for particle 3 and 4 in(a), where the strain
interval is 0.024. The paths have been shifted over arbitrary distances to minimize
overlap and improve clarity.
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The trajectories are replotted in figure 4.2, representing the particle coordinates
as a function of time. The starting point of all trajectories was set toγ̇∆t = 0 and
although some of the particles in figure 4.1 were followed for as long as 50 strain
units, figure 4.2 has a maximum strainγ̇∆t = 30 so that details can be distinguished.
Note that different particles could be tracked over different lengths of time. The
refined trajectories of the high resolution measurements of particle 3 and 4 in the
30% suspension (γ̇∆t = 0:024) did not alter the picture. All important observations
can be made from the long (low resolution) trajectories withγ̇∆t = 0:24.

For both concentrations, the fluctuations in thex�direction (closed symbols)
are more pronounced than in thez�direction (open symbols). The explanation is
straightforward: displacements in they�direction (the unregistered out-of-plane ve-
locity gradient direction) onto a different streamline inherently affect the convective
motion in the velocity direction(x). Since the motion in they�direction is also of
diffusive nature, the observed fluctuations along thex�axis are the result of two pro-
cesses: the fluctuations inx�velocity itself and an additional coupling term due to
fluctuations in they�direction.

The convective velocity field also causes the particles to occasionally drift over
large distances along thex�axis, i.e. when they are displaced onto a different stream-
line. Because of this, the particles can drift away from the zero velocity plane and
(temporarily) disappear from the viewing window (for example particle 3 at both con-
centrations). On average, however, the particles should fluctuate around their original
position, which is validated by thez�data of figure 4.2a andb.

The largest displacements in figure 4.2 are ofO(a) for both volume fractions and
in both flow directions (a being the particle radius), thus confirming the scaling ideas
of Leighton & Acrivos (1987a) and Brady & Morris (1997) which are based on the
assumption that interactions will lead to displacements of the size of the particle. The
present study provides unique experimental evidence in support of their predictions.
In particular theO(a) displacements in thez�direction are notable. Calculations
of particle interactions in the dilute regime (da Cunha & Hinch, 1996; Wanget al.,
1996; Pesche, 1998) have shown that displacements in the vorticity direction are
considerably smaller than in the velocity gradient direction, irrespective of the mech-
anism responsible for braking the symmetry of two particle interactions in Stokes
flow: particle roughness (Da Cunha & Hinch, 1996), the presence of a third parti-
cle (Wanget al., 1996) or a repulsive force (Pesche, 1998). As a consequence, the
calculations in the dilute regime render highly anisotropic self-diffusion coefficients,
D̂yy=D̂zz�O(10), while experiments (chapter 3, Phan & Leighton (1993)) and Stoke-
sian Dynamics calculations (Foss & Brady, 1999) in the concentrated regime both
find D̂yy=D̂zz� 2. Taking into account that both theoretical (dilute) and Stokesian
Dynamics (concentrated) calculations showO(a) displacements in they�direction,
our experimental particle trajectories withO(a) steps in thez�direction (fig. 4.2) are
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in good agreement with the data for concentrated suspensions. Apparently, additional
effects must be incorporated in the theories for dilute suspensions to account for the
relatively low experimental anisotropy.

Figure 4.2: Positions of individual particles as a function of dimensionless timeγ̇∆t
for (a) φ = 0:30 (b) φ = 0:50 in thex�direction (closed symbols) andz�direction
(open symbols). Numbers correspond to fig. 4.1 and the average particle size is
indicated.

Figure 4.1 and 4.2 reveal slight differences in particle motion at the two volume
fractions. Forφ = 0:30 the curves are very smooth, which is particularly clear in
the z�direction. The particle trajectories consist of a chain of successive displace-
ments, which occur relatively slowly. In the highly concentrated 50% suspension the
particles move more violently: the major displacements occur faster and are larger



4.4 SELF-DIFFUSION MEASUREMENTS 71

in amplitude. In between the large steps the particles keep wiggling around their
location with a characteristic time that is shorter than the sampling interval. Occa-
sionally, sudden stationary sections can be observed (e.g.x�position of particle 2
aroundγ̇∆t = 12) as if the particle is trapped.

Although the trajectories provide useful insight into the motion of individual trac-
ers, they are less suitable for a detailed quantitative analysis. The manual procedure
is labor-intensive and a significant number of paths would be needed for reliable
statistics.

4.4 Self-diffusion measurements

For a quantitative analysis of the particle motion we have switched to another obser-
vational level: the statistics of motion of a large ensemble of particles.

In recent years we have developed a correlation technique for measuring self-
diffusion coefficients in non-colloidal suspensions under shear (described in chapter 2
and 3). Without going into details, the experimental procedure essentially results in
h∆x∆xi=a2� γ̇∆t�graphs which show the ensemble averaged square displacement
versus time. Both the displacement and time are made dimensionless by scaling with
respectively the particle radiusa and shear ratėγ. Linear scaling in these graphs
indicates diffusive behaviour and in that case the self-diffusion coefficients can be
extracted directly from the slope of the linear regime, making use of the standard
diffusion relationh∆x∆xi � 2 D ∆t.

The transition to the linear (diffusive) regime is expected to depend on the under-
lying microstructure of the suspension. Therefore we believe that a detailed timescale
analysis of the shear-induced diffusion data will yield valuable information about the
microstructure in sheared suspensions. Figure 4.3 is reproduced from chapter 3 and
shows the results of the original correlation study together with the long-time linear
fits which were used to determine the long-time diffusion coefficientD̂ (also dimen-
sionless). The graphs all concern particle displacements in the vorticity (z) direction,
which was also visible in the particle trajectories of the previous section.

Figure 4.3 shows a transition to linear (diffusive) behaviour that is most pro-
nounced for the lowest volume fractions. The evolution from figurea to d suggests
that the transition time decreases with increasing volume fractionφ.

In an attempt to find a quantitative criterion for the transition point the data were
plotted on log-log-scale, so that deviations of the linear fit could be observed more
clearly. In figure 4.4 the logarithmic versions of figure 4.3 are presented together
with the long-time linear fit and the results of an empirical model fit to be described in
section 4.4.1. The deviations of the data at short times from the long-time linear fit are
more pronounced, but it proved to be difficult to formulate an objective quantitative
criterion to unambiguously determine the transition location.
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Figure 4.3: Scaling of the average squared particle displacementσ2
z=a2 with di-

mensionless timėγ∆t for (a) φ = 0:20,(b) φ = 0:30, (c) φ = 0:45 and(d) φ = 0:50;
the lines represent the linear fit to the data points at long times.
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Figure 4.4: Logarithmic version of figure 4.3;σ2
z=a2 versusγ̇∆t for (a) φ = 0:20,

(b) φ = 0:30, (c) φ = 0:45 and(d) φ = 0:50; the dashed lines (- - -) represent the
linear fit to the data points at long times, the solid lines (—-) are the results of the
empirical fit with equation 4.1.
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The preferable approach for the characterization of the curves in figure 4.4 would
have been the use of a theoretical model which contains the transition time as a fit-
ting parameter. In this idealized situation standard statistical fitting routines could
provide an unambiguous best fit value for the transition time. However, no theoret-
ical model with a sound physical basis has been developed so far for shear-induced
self-diffusion. Therefore we have chosen another solution.

4.4.1 Empirical model

We have attempted to find an empirical model that is capable of describing the curves
of figure 4.4. Such a model should fulfill a number of important requirements in or-
der to be scientifically acceptable. First of all, it should provide an accurate fit to the
experimental data over the entire range of data. Secondly, it should involve a min-
imum number of free parameters and finally these parameters should have physical
significance.

A closer look at the log-log-plots of figure 4.4 discloses interesting scaling in the
short-time regime. Within the classical framework of diffusion a transition might be
expected from quadratic (’ballistic’) to linear (diffusive) scaling. However, the graphs
do not display slope +2 at short times. Instead, the suggestion arises that the short-
time scaling is also more or less linear, with slope +1. This observation implies the
existence of two diffusive regimes: the long-time shear-induced self-diffusion which
is characterized by the linear fit in figure 4.3 and an additional short-time diffusivity
for γ̇∆t smaller than roughly 0:20. On intermediate timescales there is a smooth tran-
sition between the two diffusive regimes.

The considerations mentioned above lead to the following empirical model to
capture the observed phenomena:

σ2

a2 =
c2 � γ̇∆t

1+( γ̇∆t
c0

)c1
+

(c3 � γ̇∆t +c4)(
γ̇∆t
c0
)c1

1+( γ̇∆t
c0

)c1
(4.1)

whereσ=a andγ̇∆t are the dimensionless peak width and time. In the limits of short
and long times equation 4.1 converges to the asymptotes:

σ2

a2 = c2 � γ̇∆t for γ̇∆t � c0 (4.2)

σ2

a2 = c3 � γ̇∆t +c4 for γ̇∆t � c0 (4.3)

The fit parameters can be interpreted as follows: the location of the transition (c0),
the strength of the transition (c1), the short-time diffusion coefficient (c2 = 2D̂0), the
long-time diffusion coefficient (c3 = 2D̂∞) and the off-set of the linear long-time fit
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(c4). Equation 4.1 is similar to the well-known Cross model, often used to character-
ize shear-thinning fluids with two viscosity plateaus Cross (1965).

Equation 4.1 was used to parameterize the data by means of a standard least
square non-linear fitting routine. Since the linear fits in figure 4.3 show that the off-set
of the long-time linear fit only differs significantly from 0 at high volume fractions
(φ > 0:35), parameterc4 was used in equation 4.1 only if it had a significant and
meaningful contribution to the convergence of the fitting routine. The fit procedure
was carried out with 1=ε2 as weight factor,ε being the statistical standard deviation
of σ2=a2 that was also used for the error bars in figures 4.3 and 4.4. In their turn these
errors have been obtained from non-linear Gaussian fits (chapter 3).

4.4.2 Fit parameters

The results of the empirical model fit are presented in figure 4.4 as the solid curves.
It can be concluded that the proposed model describes the data surprisingly well over
the full range of time and volume fraction.

Although the proposed model is of empirical nature, its parameters have a clear
physical meaning and their dependence on particle volume fractionφ, as presented
in figure 4.5, can serve as a starting point to gain physical insight into the nature of
the processes that take place in concentrated suspensions under shear. The error bars
in the graphs are purely the result of an external statistical estimation, obtained from
the covariance matrix of the non-linear fit. It provides an explanation for the fact
that some of the data points (e.g.c0 for φ = 0:45) have unrealistically small errors in
comparison to the rest of the data points. Nevertheless, this error estimate is the only
available objective measure of the parameter reliability and regarding the empirical
nature of our model it seemed appropriate to present those values.

Of the fitting parameters,c2 andc3 are directly related to the physical quantities
D̂0 andD̂∞, respectively a short- and long-time diffusion coefficient (eq. 4.2). The
dependence ofc3 on φ should be identical to that of the long-time self-diffusion co-
efficient D̂zz which was determined by using the long-time linear fit of figure 4.3 in
chapter 2. This requirement is indeed satisfied.

The existence of a short-time diffusion regime, however, has not been reported
before. As far as we are aware no previous experimental technique has been capa-
ble of measurements on such short timescales and no detailed analysis of numerical
simulations in this regime has been reported so far, although it should be relatively
straightforward to retrieve the necessary data from standard simulation runs.

Although for the highest volume fractions the short-time linear regime lies out-
side the accessible time window, the quality of the fit with equation 4.1 and the data
for φ = 0:20 and 0:30 provide strong evidence that short-time diffusivity indeed ex-
ists at all volume fractions. The corresponding diffusion coefficient,D̂0 = 0:5 � c2,
exhibits aφ-dependence that strongly differs from the behaviour ofD̂∞. Although
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Figure 4.5: Fit parameters of equation 4.1 as a function ofφ.
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the standard deviations are significant because of the limited amount of data at short
times, especially forφ = 0:50, D̂0 seems to grow continuously with increasingφ,
whereasD̂∞ increases strongly for intermediate volume fractions, followed by a
plateau aboveφ = 0:35 and an apparent decrease at even higher volume fractions
(reported as well by Phan & Leighton (1993)).

The parametersc0 andc1 are somewhat more difficult to interpret. They charac-
terize the transition between the two diffusion regimes through its slope (c1) and lo-
cation (c0). For the development of a physical picture of the microscopic processes, it
seems more useful to define two transition times,τ̂0 andτ̂∞, which respectively mark
the end of short-time and the onset of long-time diffusion, expressed in dimensionless
strain units.

Figure 4.6: Definition of the characteristic dimensionless timesτ̂0 and τ̂∞; the
dashed lines denote the asymptotes, the dotted line the intermediate line and the
thin curve the fit function equation 4.1; the thick line represents the log-log tangent
at the intercept.

The definition ofτ̂0 and τ̂∞ that we have chosen is illustrated in figure 4.6. The
characteristic times are determined as follows: first, in the log-log-plot (figure 4.4)
the linear asymptotes of equation 4.2 are drawn and used to construct an additional
line in between. The intersect of this intermediate line with the model fit (eq. 4.1)
is then determined analytically and at the intersection point the tangent of the fit
function (straight line in the log-log-plot) is calculated. Finally, the intersects of the
tangent with the asymptotes can be computed and these points are calledτ̂0 andτ̂∞.

The values of̂τ0 and τ̂∞ were calculated for all volume fractions and are plotted
in figure 4.7. The logarithmic scale was chosen to enable direct comparison of the
two times, which differ by an order of magnitude. The error bars are the result of a
rigourous analysis of the propagation of errors: for each fit parameter (c0 to c4) the
influence of its statistical error on the determined values forτ̂0 andτ̂∞ was calculated.
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The resulting error estimates were summed quadratically to obtain a reliable measure
for the error bars in figure 4.7.

Within the experimental errors, which are significant especially forφ = 0:50, the
longest timescalêτ∞ is constant aṫγ∆t � 1 over the full range of volume fractions,
indicated by the dashed line.

The shortest timescale,τ̂0, is an order of magnitude smaller and decreases with
φ. Simple hand-waving arguments can be used to estimate an upper limit forτ̂0.
The point where short-time diffusion ends and long-time diffusion starts to dominate
particle motion, here characterized byτ̂0, should be smaller than the affine shear de-
formation where particles directly interact with their nearest neighbours. This defor-
mation can be approximated byδ=a with a the particle radius andδ the space around
a particle in the ’cage’ formed by its neighbours. Assuming a homogeneous distri-
bution of monodisperse particles,δ=a can be estimated by means of the following
equation:

δ
a
=

�
φmax

φ

�1=3

�1 (4.4)

whereφmax denotes the maximum particle volume fraction. In figure 4.7 the curve
(dash-dotted) has been drawn forφmax = 0:63 and provides a decent upper limit to
the data.

Figure 4.7: Transition times (�) τ̂0 and (H) τ̂∞ as a function ofφ; (- - -) represents
τ̂ = 1 and (-� -) eq. 4.4 withφmax= 0:63.
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4.5 Rheological measurements

In addition to the direct observation of particles and a statistical analysis of the dis-
placements we have investigated the rheological properties of the suspensions. Like
shear-induced diffusion the rheological properties are the result of the underlying
microscopic structure. Rheometry thus can be used as an independent method to
experimentally address fundamental questions about the nature of the particle distri-
bution in suspensions.

Our rheological experiments on concentrated non-colloidal suspensions were in-
spired by the work of Gadala-Maria & Acrivos (1980) and Gondretet al. (August
18-23, 1996), who observed peculiar behaviour of the dynamic viscosityη0 of non-
colloidal suspensions. In order to relate the diffusion and rheology in our system, we
have carried out similar experiments for our suspensions. Since the physical chem-
istry of suspensions is known to be of great influence on the rheology, it is non-trivial
that our specific suspension should behave exactly like the materials used in previous
studies.

Amongst other observations Gadala-Maria & Acrivos (1980) discovered that the
stress response in their controlled strain oscillations in both plate-plate and Couette
configuration was linear at low strain amplitudes, but became highly non-linear at
amplitudes ofγ0 � 1 (see their figure 8).

Gondretet al. (August 18-23, 1996) reported that the dynamic viscosity of con-
centrated suspensions strongly depended on frequency and amplitude of the oscilla-
tions. As far as we can reconstruct from their paper, the experiments were carried
out in a plate-plate geometry as well, which has the disadvantage that the strain dis-
tribution over the sample volume is highly non-uniform, being zero in the center and
maximum at the edge of the plates.

Our rheological measurements were carried out in a controlled stress rheometer
with Couette geometry (see section 4.2). Before performing dynamic measurements,
first the flow curves of the suspensions were determined. Contrary to Gadala-Maria
& Acrivos (1980) we did not wait for the equilibrium value to be reached, as it has
been shown by Leighton & Acrivos (1987a) that the gradual decrease of viscosity
in their experiments can be attributed to shear-induced particle migration out of the
Couette gap towards the stagnant fluid reservoir below the inner cylinder. To prevent
migration, which would decrease the particle volume fraction in the annular gap,
we have pre-sheared the suspensions only for a relatively short time as described in
section 4.2 in order to reach a reproducible starting point.

Due to particle migration out of the gap it was inevitable that in the course of our
experiments the viscosity slightly decreased. We have been careful to minimize the
applied shear in order to limit this effect. Figure 4.8 presents the typical flow curves
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we found. As an estimate of the effect of migration flow curves are shown which
were taken before and after our oscillatory experiments, the curves being separated
by circa 14 hours of oscillations. The curves for 30% overlap nearly perfectly, but
for the 50% suspension a significant decrease inηr was observed after the initial
pre-shear.

As correctly pointed out by Gadala-Maria & Acrivos (1980), migration compli-
cates the comparison of steady shear viscosity results for non-colloidal suspensions
from various researchers. Such a comparison is not the purpose of our current work,
we just note that our viscosity data are somewhat higher than the results of Gadala-
Maria & Acrivos (1980) which should be expected since we do not wait for the system
to reach the migratory equilibrium.

Figure 4.8 exhibits shear-thinning behaviour, most notably at the highest volume
fraction. The shear-thinning is also present in the equilibrium curves of Gadala-Maria
& Acrivos (1980), but in their case it can be –at least partly– explained by the fact
that shear-induced migration increases with shear rate, thereby lowering the volume
fraction in the annular gap with increasing shear rate. The flow curves were mea-
sured subsequently for increasing and decreasing stresses and the minimal amount of
hysteresis was insufficient to relate the shear-thinning effect to shear-induced particle
migration.

Recently, Zarragaet al. (2000) have presented steady shear viscosity data from
parallel plate rheometry and reported the same phenomenon. As they suggest, the ex-
planation probably lies in the underlying suspension microstructure, but it is unclear
what happens exactly. As far as we could examine, our PMMA particles can be con-
sidered as hard spheres without additional interparticle interactions. Refractive index
matching eliminates Van der Waals interactions even at the lowest shear rates and the
large amount of salt screens off electrostatic repulsions –if present at all. Brownian
motion, finally, is also extremely small for our 90µm particles and cannot be held
responsible for the shear-thinning behaviour.

The steady shear experiments were followed by dynamic measurements. Because
of the controlled stress nature of the Haake RS150 rheometer, the stress amplitude
of the oscillations (σ) was kept constant, while the angular frequency (ω) was varied
from 0.0094 to 628 rad s�1 (0.0015-100 Hz). Because of constantσ, the amplitude
γ0 of the strain response varied withω. For a sample with frequency independent
rheological properties (e.g. Newtonian fluid) the relation would simply have been
γ0 � σ=ω.

Figure 4.9 shows the result of frequency sweeps for different values ofσ and
φ = 0:30. In the left graph, the strain amplitude of the response signalγ0 is plot-
ted versusω. As expected,γ0 decreases strongly withω and for each specific value
of ω the strain amplitude increases withσ. The corresponding data for the rela-
tive dynamic viscosityη0

r data are presented in the right graph and show very pe-
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Figure 4.8: Relative shear viscosity of concentrated non-colloidal suspensions as
measured by a controlled stress rheometer with Couette geometry; (Æ) φ = 0:30 and
(M) φ = 0:50; closed symbols were measured before and open symbols after the
dynamic measurements, about 14 hours later.

Figure 4.9: Results of constant stress frequency sweeps for a 30% suspension;(a)
the amplitude of the strain response,γ0, vs. angular frequencyω and(b) η0

r vsω for
varying stress values: (Æ) 7 Pa, (M) 21 Pa and (O) 70 Pa.
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culiar behaviour. At low frequenciesη0
r has a well-defined plateau value. Another

–considerably lower– plateau is observed at high frequencies. In the intermediate
regime, there is a sharp transition, which shifts with variations in the stress amplitude
σ.

Figure 4.10: Relative dynamic viscosityη0

r versus amplitude of the strain response,
γ0, measured forφ = 0:30 and 0.50 in frequency sweeps at various stress levels: (Æ)
7 Pa, (M) 21 Pa, (O) 70 Pa and (�) 210 Pa.

The two graphs of figure 4.9 suggest that theη0
r transition is determined by strain

amplitude rather than by frequency. To check this hypothesis, we have plottedη0
r

againstγ0 in figure 4.10 forφ = 0:30 and 0.50 (note the logarithmic scale). The tran-
sitions in the dynamic viscosity curves nicely collapse for both volume fractions. A
sudden change in the viscoelastic response of the suspension occurs at strain ampli-
tudes aroundγ0 �O(1).

Figure 4.10 clearly shows that for our non-colloidal suspensions the dynamic vis-
cosityη0

r strongly depends on strain amplitudeγ0. Within rheological nomenclature it
would thus be more appropriate to name the quantity ”apparentdynamic viscosity”,
since the use ofη0 is generally restricted to the linear low strain regime. However,
to avoid extended formulations we simply refer toη0 as ”dynamic viscosity” over
the entire measurement range, referring to the out of phase component of the strain
response signal as produced by the rheometer.

Graphs similar to figure 4.10 were obtained by Gondretet al. (August 18-23,
1996), but in their experiments the transitions were more gradual, most probably due
to the wide range of shear rates in the parallel plate configuration which smooths out
strain dependent transitions.
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Figure 4.11: Strain response signalsγ(t) for sinusoidal stress input signal (ampli-
tude 70 Pa) at three different values ofω –and therewithγ0–; φ= 0:50 and the curves
are scaled by the oscillation periodTper and amplitudeγ0.

A close look at the raw oscillatory signals provides more insight into the observed
effects, as can be seen in figure 4.11. The graph denotes the strain response functions
for a 50% suspension at various frequencies (and thus various strain amplitudes).
Note that for clarity the strain signalsγ(t) have been scaled by the oscillation period
Tper and amplitudeγ0. Unfortunately, our rheometer was unable to start its measure-
ments at a reproducible point of the stress input signal, so that no conclusions are to
be drawn from the apparent phase differences in figure 4.11.

Below the transition (γ0=0.26 in figure 4.11) the strain response is sinusoidal and
linear, so thatη0 is independent ofγ0 and a plateau is found. In the transitional regime
the response is strongly non-harmonic: the strain response forγ0 = 1:51 resembles
a saw-tooth rather than a sinus. Note that the signal is asymmetrical on reversal of
flow direction at the maxima of the oscillation. At very large strain values (γ0=16.9)
the material response is nearly harmonic again, at a considerably higher value ofη0.
Traces of non-linear response can still be observed at the turning points where the
flow direction changes, but at large amplitudes the response is dominated by a sinu-
soidal contribution that is responsible for the determination ofη0

r. Figure 4.11 shows
that the rheometer output forη0

r in the transitional regime has no clear physical mean-
ing: η0 is only a well-defined quantity for sinusoidal input and output.

The discrepancy between the two plateaus in figure 4.10 strongly increases with
volume fraction, ranging from a factor 1.3 forφ = 0:30 up to a factor 5 forφ = 0:50.
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The location of the transition (γ0;tr) also varies with volume fraction, definingγ0;tr as
the strain amplitude at the point whereη0

r is halfway between the plateau values on
the log-log-scale. The transition point shifts fromγ0;tr = 3:0�0:4 for φ = 0:30 to
γ0;tr = 1:0�0:2 for φ = 0:50, the errors being largely due to the variations in plateau
values.

4.6 Discussion

The results of the various experimental techniques described in the previous sections
provide inspiration for considerations on their physical background. In this section
we will first discuss the results of diffusion and rheology separately and then draw
the parallels and provide a framework for physical interpretation.

4.6.1 Self-diffusion

The self-diffusion data under steady shear are described extremely well by an empir-
ical fit function (eq. (4.1)). The measurements show how the average particle motion
develops when monitored from a certain arbitrary starting point in time (γ̇∆t = 0).
For very small deformationṡγ∆t the surroundings of a particle are hardly changed
and particles are observed to move diffusively, characterized by a diffusion coeffi-
cient D̂0. In the particle trajectories this effect can be noticed forφ = 0:50 in the
shape of rapid fluctuations of small amplitude. For larger deformations,γ̇∆t � 1, the
initial particle configuration is distorted significantly and the average particle motion
is affected accordingly. In this regime particles are forced by the shear flow to pass
their neighbours. The trajectories clearly display the associated steps of sizeO(a).
After even longer timeṡγ∆t > 1, the correlation of the particle motion with the initial
state is lost and a diffusive mode is reached, with diffusivityD̂∞. Although the flow
is in steady state macroscopically at every moment, the particle motion measured
from an arbitrary starting poinṫγ∆t = 0 reaches a ’steady’ diffusive state only after
deformationγ̇∆t > 1.

The characteristic times that can be associated with the transition,τ̂0 marking
the end of the short-time diffusion andτ̂∞ marking the on-set of long-time diffusion,
show a different scaling with concentration,τ̂∞ � 1 being constant and̂τ0 decreas-
ing with increasingφ. The associated diffusion coefficientsD̂0 andD̂∞ also exhibit
different dependencies onφ: while D̂∞ grows strongly withφ at intermediate concen-
trations(φ < 0:35) and reaches a plateau value for higher volume fractions,D̂0 grows
monotonically as a function ofφ.

Theφ�dependence of the long-time self-diffusion coefficient is remarkable. As
discussed in more detail in chapter 3 this particular behaviour has so far only been



4.6 DISCUSSION 85

found experimentally. Numerical Stokesian Dynamics calculations have not yet re-
sulted in a clear numerical picture: shear-induced diffusion data seem to depend on
system size and numerical algorithm. The only theoretical attempt by Brady & Mor-
ris (1997) predictsD̂∞ to grow with φ up to volume fractions were flow becomes
impossible. Their prediction, which is in fact an extrapolation of scaling relations in
the dilute regime rather than a first principles theory, is based on the idea that diffu-
sion should scale with the product of frequency and size of the particle displacements
due to interactions. Using the contact value of the pair-distribution functiong(r), they
argue that the interaction frequency should increase with volume fraction, while the
step-size remains more or less constantO(a), thus giving rise to an increasing diffu-
sivity.

There is recent evidence however (Morris, 2000) that in numerical Stokesian Dy-
namics calculations at high concentrations (roughly above 30%) particle pairs tend
to align in the flow direction. This effect is deduced from the appearance of peaks in
the particle pair-distribution functiong(r) along the direction of flow. At high P´eclet
numbers the concentration of particle pairs is usually enlarged along the compressive
axes of the shear flow, but recent calculations revealed the existence of additional
peaks along the streamlines. The effect was not found to cause long-range order in
the system (formation of particle strings), but the change in the local particle structure
could very well be responsible for a decrease in the interaction frequency, since the
increased number of particle pairs aligned along the streamlines effectively screens
interactions with other particles on neighbouring streamlines. Thus the number of
interactions would be reduced with increasing volume fraction, providing an expla-
nation for the experimentally observed plateau inD̂∞.

To our knowledge the experimental observations of a short-time shear-induced
self-diffusion are unique. Its existence is concluded from the quality of an empirical
model fit to all available data. Although clear experimental evidence exists it is not
straightforward to interpret the observations. The existence of an additional short-
time diffusive process in itself is not strange. In Brownian suspensions a similar
distinction between long and short-time diffusion can be found: at short times the
particles are rattling within the cage formed by their neighbours, the short-time self-
diffusion, and only when the cage has been deformed sufficiently particles are able to
undergo large displacements, characterised by a long-time self-diffusion coefficient.

Following the analogy with colloidal systems, apparently also non-colloidal sys-
tems exhibit small displacements within a ’cage’ on timescales which are so short
that the configuration of particles remains unchanged (γ̇∆t � 1). Two possible mech-
anisms have come to our mind to explain these fluctuations in the absence of Brown-
ian motion. The first possibility is an interparticle force with a short but finite range
(e.g. as a result of inevitable particle roughness in experimental systems) which at
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short times is able to relax the flow-induced contacts between non-colloidal particles
by pushing them apart, thus giving rise to minute displacements. An alternative ex-
planation could be found in the long-range character of the hydrodynamic forces in a
sheared suspension. Each particle will not only feel the interaction with its immediate
neighbours, but always experience fluctuations due to particle motion at larger dis-
tances. Fluctuations of this kind could cause diffusive displacements and would most
likely be of a higher frequency than the interactions with direct neighbours, which
give rise to long-time diffusion.

The ’cage’ concept is in agreement with the observed behaviour of the transition
time τ̂0. As shown in figure 4.7 a simple calculation of the size of the cage (eq. (4.4))
provides a good estimate for the upper limit of the deformation where short-time
diffusion should be dominated by the large displacements of long-time self-diffusion.

The experimental observation thatD̂0 grows withφ (fig. 4.5) at first sight seems
compatible with both mechanisms: at larger volume fractions stronger hydrodynamic
fluctuations could be expected and also particles would be pushed harder towards
each, which could lead to larger relaxation steps. Conclusive evidence on this topic
could not be extracted from either of our experiments, but the persistent observation
of D̂0 is quite intriguing.

4.6.2 Rheology

Steady shear and oscillatory measurements have shown that the two important pa-
rameters to characterize the results are stress and strain. The flow curves show that
for increasing stress, shear-thinning occurs (fig. 4.8). This effect is most probably
the result of changes in microstructure. All other possible explanations seem to fail:
Brownian motion is absent and the presence of interparticle forces is unlikely.

In oscillatory experiments two strain regimes can be identified in the dynamic
viscosityη0

r. At small amplitudes (γ0 � 1) the stress and strain signals are harmonic
and a well-defined plateau exists. The particle positions remain virtually unchanged
during these measurements and the microstructure at rest is probed.

For larger amplitudes (γ0 � O(1)) the strain signal becomes non-harmonic (see
fig. 4.11). Similar non-harmonic responses were also reported by Gadala-Maria &
Acrivos (1980) who analyzed the raw signals of their controlled strain rheometer for
γ0 � 1:05. The authors were able to directly relate the shape of the non-linear stress
response to the build-up of shear-induced microstructure, which they also found in
elegant steady shear flow reversal experiments. The typical deformation required to
complete structure formation in the flow reversal measurements wasγ � 2 and the
value decreased with increasing volume fraction (see their Fig. 7). Oscillatory mea-
surements on our suspensions corroborate their results. The characteristic strain value
γ0;tr which we used to define the location of the transition between theη0

r�plateaus
is in quantitative agreement with the typical timescale for flow-induced structure for-
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mation as measured by Gadala-Maria & Acrivos.

At very large strain amplitudes (γ0� 1) the particles are forced into a microstruc-
ture which resembles the situation under steady shear. After reversal of the flow direc-
tion only a small fraction of the oscillation period is needed to break down and rebuild
the microstructure. During the remaining part of the oscillation, the microstructure
has reached a steady state and the response is ’apparently’ linear with a dynamic
viscosity η0

r. This is nicely illustrated by figure 4.11, where the strain response is
strongly non-linear for intermediate strain amplitudeγ0 = 1:51 after flow reversal,
while only a relatively small dimple can be observed for the large amplitude experi-
mentγ0 = 16:9. In absolute strain units, the region of microstructural rearrangements
are of the same magnitude for both signals:∆γ� 3.

The plateau values ofη0
r at high strain oscillations exhibit shear-thinning be-

haviour that is similar to the steady shear flow curves. In particular forφ = 0:50
the high strain plateau values do not overlap completely. The variations in plateau
value can not be attributed to migration: in our experiments we have repeated the full
sequence of three frequency sweeps for several times over night and the overlap be-
tween the first and last sequence at each specific stress value was excellent, the over
night variations inη0

r at a specific stress value being much smaller than variations
between different stress curves.

Quantitative analysis of the low strain (high frequency) plateau, where shear-
induced microstructure is absent reveals an interesting observation. In figure 4.12
we have plotted the plateau values for our non-colloidal suspensions together with
literature data on colloidal suspensions (van der Werffet al., 1989; Shikata & Pear-
son, 1994). For colloidal hard-sphere suspensions the high frequency limit of the
dynamic viscosity,η0

r;∞, is a well-defined quantity representing the hydrodynamic
viscosity contribution at timescales where the Brownian motion is negligible, so that
the equilibrium particle distribution is probed. The agreement is excellent, suggest-
ing that the high frequency viscosity of hard sphere suspensions is independent of
Péclet number.

At first glance the agreement is remarkable. For colloidal particles the Brow-
nian motion rapidly relaxes shear-induced structure after cessation of flow, but for
non-colloidal particles this force is extremely weak so that the associated relaxation
processes become very slow and the particle distribution is not in thermodynamic
equilibrium during the dynamic measurements. Nevertheless, within experimental
errors the high frequency measurements yield the same relative dynamic viscosity
for both colloidal and non-colloidal systems.

This observation can be interpreted within the theoretical framework developed
by Brady and coworkers (Brady & Morris, 1997). Their approach is based on an-
alyzing the particle pair distribution functiong(r). Without going into the details,
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Figure 4.12: Relative dynamic viscosityη0

r as a function of particle volume fraction; low
strain plateau values from this study (�) are compared to the high frequency limit as deter-
mined by Van der Werffet al. (1989) (Æ) and Shikata & Pearson (1994) (M) for colloidal
hard-sphere suspensions.

a relevant result of the analysis is the existence of a thin lubrication boundary layer
around a particle of thicknessO(a Pe�1), where Pe is the P´eclet number anda the
particle radius. At high concentrations the fraction of particle pairs residing within
this boundary layer –described by the pair-distribution function at contact,g(2;θ)– is
argued to dominate the suspension stress. As a result, relaxation of this extremely thin
boundary layer would be sufficient to remove the shear-induced viscosity contribu-
tion. Since the P´eclet number in our non-colloidal system is very high (O(1010)), the
boundary layer is so thin that even the extremely weak residual Brownian motion or
the slightest particle roughness will be strong enough to rapidly destroy the bound-
ary layer after cessation of flow. The high-frequency viscosity is then determined
by the fraction of particles that remains within the boundary layer after relaxation,
which is probed in oscillatory flow. Outside the equilibrium boundary layer our non-
colloidal system has not reached thermodynamical equilibrium and the distribution
is non-homogeneous. Nevertheless, the sameη0

∞;r-values are found for colloidal and
non-colloidal systems, in accordance with the idea that the boundary layer dominates
viscosity.

4.6.3 Relation between self-diffusion and rheology

In this section we compare the different observations and try to embed the results in
a coherent physical interpretation. Our main aim is to provide a sound experimental
basis for discussions about the microscopic processes in sheared suspensions and
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not to give a detailed quantitative theoretical interpretation. We want to make use
of the acquired expertise by pointing out striking correspondences within our set of
experiments.

At first glance the combination of studying self-diffusion and rheology might
raise questions. However, both physical quantities have the same origin: the spatial
distribution of particles. This can easily be shown within the formalism used by
Brady & Bossis (1988): �
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�
=

�
RFv RFE

RSv RSE

� �
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�
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N)

T is a vector of the hydrodynamic forces on theN parti-
cles in the system. Similar definitions apply to the stresslet vectorSand the particle
velocities relative to the ambient flowv∞�v. E∞ represents the external rate of strain.
The resistance matricesRα;β depend on the positions of all particles in the suspension.

By partial inversion Eq. 4.5 can be rewritten in a more suitable form (Jongschaap
& Mellema, 1995): �
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where the matrix elementsAα;β are directly related to the resistance matricesRα;β and
thus also depend on particle configuration only. For our non-colloidal suspension in
Stokes flow and in absence of interparticle forces, the hydrodynamic forceFH

i = 0
on every particle. Thus the relative velocity and stresslet are functions of the external
rate of strain and the particle configuration only. Self-diffusion is directly related to
the autocorrelation ofv∞�vi, averaged over all particles. The macroscopic viscosity
can be calculated through the integral of the particle stressletSi weighted with the
particle distribution function. Thus both self-diffusion and viscosity directly depend
on the spatial distribution of particles.

Because of the joint background, a comparison between the experimental results
is meaningful. The on-set of the long-time self-diffusion regime in particle motion
can be associated with the occurrence of non-linearity in the strain response signal
during dynamic viscosity measurements. Both indicate the typical strain at which
excluded volume effects of neighbouring particles become of importance. Indeed,
there is qualitative agreement in the sense that both transitions take place for strain
values ofO(1) and that the transition shifts to lower values for increasing volume
fraction φ. Quantitative agreement is difficult to verify, since the definition of the
transition locations is somewhat subjective.

The diffusion coefficient̂D∞ and plateau inη0
r for large strain amplitudes show the

effect of multiple excluded volume effects in the large deformation limit, where the
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initial configuration has been lost. The volume fraction dependency of these quan-
tities shows an notable correlation: at high volume fractions the long-time diffusion
levels off, while the large amplitude dynamic viscosity increases strongly. Appar-
ently, it becomes more difficult for particles to move and deformation requires larger
stresses.

In the limit of small deformation the particle configuration is hardly changed.
Both D̂0 and η0

r;∞ reflect the suspension properties under these conditions and fol-
lowing the correlation for diffusion and viscosity at large deformations, they should
be linked. The existence of a short-time diffusion requires the a driving force of
unknown origin; two possible explanations were provided in section 4.6.1. From os-
cillatory measurements we have discovered that the small amplitude viscosityη0

r;∞ of
colloidal suspensions is the same as the high frequency limit for non-colloidal sus-
pensions. These results, although not yet completely understood, set the stage for
further discussion on the microstructure of concentrated suspensions.

4.7 Conclusions

We have experimentally studied the particle motion in concentrated non-colloidal
suspensions under shear by employing three different techniques: particle tracking to
determine the trajectories of individual particles, ensemble averaged displacements
statistics and rheometry. The techniques probe the suspension on three different lev-
els: the microscopic particle position, the ensemble level of average motion and the
macroscopic level of mechanical properties. The combination of measurements has
enabled us to find a number of intriguing results which altogether provide a coherent
qualitative physical picture of the microscopic structure in sheared suspensions.

Particle tracking revealed that for medium concentrated suspensions (30%) the
particle trajectories are very smooth with distinct displacements due to interactions
with neighbouring particles on the characteristic timescale of the shear flow (γ̇∆t �
O(1)). The size of the displacements in both the vorticity and velocity direction
was O(a), which is in agreement with shear-induced diffusion experiments. The
fluctuations in the velocity direction are more pronounced and this could be attributed
to the coupling of diffusion in the velocity gradient direction with the convective flow.

For a highly concentrated 50% suspension the picture is similar, although the
frequency and size of the displacements are slightly larger and the particles exhibit
additional fluctuations of a shorter timescale superimposed on the ’slow’ fluctuations.

A more detailed analysis of previously reported shear-induced self-diffusion data
showed that in addition to the well-known long-time diffusivity the motion at the
shortest experimentally accessible timescales (γ̇∆t < 0:10) is also of diffusive nature.
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This phenomenon has not been observed before.

Our data over the entire range of time could be characterized very well by means
of an empirical model. The model was chosen in such a way that a minimum of
physically meaningful parameters was sufficient to describe the data, i.e. two dimen-
sionless diffusion coefficients –̂D0 andD̂∞–, two transition times –̂τ0 andτ̂∞– and an
unimportant, but physically meaningful parameterc4.

The long-time diffusion coefficient̂D∞ exhibits a peculiar dependence on volume
fraction: up toφ = 0:35 it strongly increases, above this volume fractionD̂∞ levels
off and even has the tendency to go down at 0.50. Experimentally this behaviour
has been reported before (chapter 3, Phan & Leighton (1993)) with two different
techniques. However, because of contradictory numerical and theoretical results, its
origin is still subject of discussion. The characteristic onset of long-time diffusion,τ̂∞
(for definition see figure 4.7), is more or less constant within the experimental errors
at a valueτ� 1 –expressed in strain units– as would be expected from a phenomenon
driven by particle interactions in shear flow.

The short-time diffusive process was described by the diffusion coefficientD̂0,
which is significantly smaller than̂D∞ and increases withφ. We have no unam-
biguous interpretation of this quantity, but the underlying displacements occur on a
timescale on which the configuration of neighbouring particles has not changed. The
timescale of this diffusive process is much shorter,τ̂0 � τ̂∞, and quantitatively the
values ofτ̂0 are in agreement with the concept of ’caging’ at short times. At longer
times, direct hydrodynamic interactions with neighbouring particles lead to larger
displacements and the long-time self-diffusion becomes dominant.

In controlled stress oscillatory experiments a strong dependence of the (appar-
ent) relative dynamic viscosityη0

r on the strain amplitudeγ0 was noticed. At high
strain values (γ0 � 1) a well-defined plateau ofη0

r exists and a much lower plateau
was found for small amplitudes (γ0). The difference between the two plateaus was
attributed to shear-induced structure at high deformations, when particles are driven
closely together, thus giving rise to an extra contribution to the viscosity. The struc-
ture is generally characterized by the pair-distribution functiong2(r) in the thin
boundary layer around the particle (e.g. Brady & Morris (1997)). During low strain
oscillations this structure related viscosity contribution disappeared, leaving a lower
η0

r plateau which coincides perfectly with the high frequency (and thus low strain)
limit η0

∞;r as observed in Brownian suspensions (Van der Werffet al., 1989). This
correspondence suggests that even in non-colloidal suspensions the boundary layer
is rapidly destroyed after cessation of flow. According to the theoretical scaling of
Brady & Morris (1997), the small residual Brownian force would be sufficient to
eliminate the extremely thin boundary layer structure, so that the boundary layer
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reaches equilibrium almost instantly. The distribution of particles outside the bound-
ary layer is apparently less important for the high frequency limit ofη0

r. In non-
colloidal suspensions the particle distribution outside the boundary layer does not
reach equilibrium during oscillatory measurements.
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Chapter 5

Measuring the Full Diffusion Tensor of Shear-Induced
Self-Diffusion

Abstract

The full tensor of shear-induced self-diffusion is studied experimentally for concen-
trated suspensions of non-colloidal hard spheres. A new approach for data analysis
is presented, which enables to extract all components of the diffusion tensor. In pre-
vious studies only the components in the velocity gradient and vorticity direction
could be measured,̂Dyy andD̂zz. The method is an extension of the spatial corre-
lation technique devised in chapter 2. The main feature of the advanced method
is the removal of large affine particle displacements due to the macroscopic shear
flow, so that small diffusive displacements can be detected. Experimental data are
fitted directly to the theoretical transition probability distribution. Evaluation of the
evolution of the fit parameters with strainγ̇∆t makes it possible to identify the range
of γ̇∆t where the particle motion is diffusive. In this regime for the first time shear-
induced diffusion in the velocity direction̂Dxx and for the off-diagonal component
D̂xy could be measured. The off-diagonal component was found to be negative.
Both D̂xx andD̂xy seem to be independent of volume fraction.D̂xx is an order of
magnitude larger than diffusion in the other directions.
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5.1 Introduction

Suspensions are widely used in industry, e.g. slurries for transportation of solid par-
ticulate materials, paints, pastes, food. Fundamental understanding of their complex
properties has therefore been the aim of many studies. In addition to macroscopic
properties like suspension viscosity and sedimentation velocities, shear-induced dif-
fusion is one of the basic transport phenomena in concentrated non-colloidal suspen-
sions under flow.

Shear-induced diffusion is the result of interactions between neighbouring par-
ticles: in concentrated suspensions under flow, particles on adjacent streamlines are
forced by the bulk flow to overtake each other. In very dilute suspensions the hydro-
dynamic interactions can essentially be treated as two-particle interactions which are
symmetrical in low Reynolds number flow. However, in concentrated suspensions
this symmetry is broken and the interactions lead to net particle displacements of
random nature which can be characterized as shear-induced self-diffusion.

Experimental observations of shear-induced particle diffusion in neutrally buoy-
ant suspensions date back to Ecksteinet al. (1977), who noticed that in Couette flow
particles exhibit fluctuating motion. The Reynolds number of the flow was very low
and the particles were non-colloidal. Under these circumstances, the more familiar
phenomena of Brownian (thermally driven) and turbulent (inertially driven) diffusion
can be neglected. Nevertheless the particle motion is chaotic and can be characterized
as self-diffusion. The subject has been under renewed attention since the experimen-
tal work of Leighton & Acrivos (1986, 1987a,b).

In addition to self-diffusion measurements it was also shown that in case of in-
homogeneities in shear rate and/or particle volume fraction shear-induced diffusion
can lead to macroscopic migration. For example, a sediment layer of non-colloidal
particles will be resuspended by applying shear flow (Leighton & Acrivos, 1986). In
Couette rheometry shear-induced diffusion can lead to the migration of particles out
of the annular gap into the stagnant reservoir underneath the bob. The decreased par-
ticle concentration in the annulus leads to underestimating the suspension viscosity
(Leighton & Acrivos, 1987b).

In this paper we focus on self-diffusion, since we consider it to be the basic
microscopic mechanism behind all shear-induced diffusion phenomena. Detailed
knowledge about the behaviour of self-diffusion will be crucial for understanding
particle motion on the microscopic level and thereby capturing the essential features
of the associated macroscopic transport processes. In particular we will aim for the
experimental determination of the full shear-induced self-diffusion tensor.

Experimental work on self-diffusion has up till now focused on the determination
of diffusivities in the velocity gradient and vorticity direction, resp.Dyy andDzz, since
these are the easiest to measure. The technique employed by Ecksteinet al. (1977);
Leighton & Acrivos (1987a); Phan & Leighton (1993) is based on measuring the
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passage time and/or axial position of an opaque tracer particle in a refractive index
matched concentrated suspension after each full rotation in a Couette cell. Fluctu-
ations in the passage time can be linked to the diffusion coefficient in the velocity
gradient direction (usually referred to asy�axis), because in Couette flow the rota-
tional velocity directly depends on the tracery�position. In addition, the axial tracer
position (Phan & Leighton, 1993) provide information about diffusion on the vortic-
ity direction (z). Since the method is based on full rotations of tracers in a Couette
cell, the observation time cannot be controlled externally and the accessible range of
timescales is limited to relatively large strain values (the strainγ̇∆t representing the
relevant dimensionless time of the experiments).

In chapter 2 and 3 we have developed a novel technique that is suitable for mon-
itoring the particle displacements over a range of strain values. The technique is
based on spatial correlation of tracer positions in a large set of video images. In a
concentrated suspension the majority of particles are refractive index matched with
the suspending fluid so that a small fraction of coloured tracer particles (typically
0.3% volume fraction) can be visualized with standard optics. Video images can be
recorded with a digital camera and analyzed with image analysis software. Although
the technique has so far only been applied to measure the diffusion coefficientsDyy

andDzz in respectively the velocity gradient and vorticity direction, it is capable of
determining other components of the diffusion tensor,Dxx andDxy, as will be shown
in this paper. The data analysis requires significant calculational effort, as will be
discussed in section 5.2. Experimental details are described in section 5.3, where a
detailed example of the data analysis will be shown. The results will be presented and
discussed in section 5.4. Before drawing conclusions in the final section, our results
will also be compared to the recent numerical data of by Foss & Brady (1999).

5.2 Theory

In this section we will show how the data analysis of the correlation technique as
described in detail in chapter 2 can be extended to extract the elements of the shear-
induced self-diffusion tensor that have not yet been determined experimentally: the
diffusivity in the velocity direction,Dxx, and the off-diagonal componentDxy.

5.2.1 The diffusion tensor

The shear-induced self-diffusion tensorD can be defined by the standard diffusion
relation:

h∆x ∆xi � 2 D ∆t (5.1)
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where∆x denotes the diffusive particle displacement vector andhi the ensemble av-
erage over an ensemble of macroscopically identical systems for the given flow ge-
ometry and boundary conditions.

Based on dimensional analysis, the shear-induced self-diffusion tensorD must
scale like:

D = γ̇ a2 D̂(φ) (5.2)

because the only relevant timescale in a concentrated non-colloidal suspension is the
inverse shear rate 1=γ̇ and all length scales in the system must depend on the particle
radiusa. The dimensionless tensorD̂ is then only a function of dimensionless pa-
rameters of which the particle volume fractionφ is the most important one (Eckstein
et al., 1977). In principle other dimensionless numbers could still play a role, like
Péclet number (Pe) and relative size of particles compared to the geometry,a=L (L
being the gap width), but previous experiments on shear-induced self-diffusion have
not produced evidence for such influences (chapter 2, Ecksteinet al.(1977); Leighton
& Acrivos (1987a); Phan & Leighton (1993)).

D is shear-induced and is therefore –in analogy to the stress tensor in viscometric
flows– an isotropic tensor functionD = f (L) of the velocity gradient tensorL =
γ̇ exey, which itself is an isotropic function of the vectorsex and ey that span the
viscometric flow. Hereex denotes the velocity direction andey the velocity gradient
direction. According to a representation theorem for isotropic functionsD can then
be written as

D = α0(γ̇) I +α1(γ̇) (exex)+α2(γ̇) (eyey)+α3(γ̇) (exey+eyex) (5.3)

Combining equation 5.2 and 5.3 leads to the following form of the self-diffusion
tensor:

D = γ̇ a2 D̂ = γ̇ a2

2
4D̂xx D̂xy 0

D̂xy D̂yy 0
0 0 D̂zz

3
5 (5.4)

The representation theorem does not prove that the four remaining diffusion com-
ponents in equation 5.4 differ from zero. It only shows that based on symmetry
considerations only these components can be of physical importance.

The interpretation of the diagonal components (D̂xx, D̂yy, D̂zz) is straightforward:
these components represent anisotropic diffusion in the various flow directions. In a
sheared suspension, such anisotropy seems reasonable because of the distinct char-
acter of the three directions. The off-diagonal componentD̂xy is more difficult to in-
terpret. Equation 5.1 shows that this component is the result of correlations between
the displacements in the flow direction,∆x, and in the velocity gradient direction,∆y,
thus leading to a non-zeroh∆x∆yi. Foss & Brady (1999) provide an explanation for
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the sign and magnitude of̂Dxy over a wide range of P´eclet numbers. For our non-
colloidal suspensions only the case of extremely high P´eclet numbers is of interest.
The concept of Foss & Brady (1999) is repeated here in a simplified mechanistic
framework, which we believe to be of assistance for understanding the nature and
origin of D̂xy.

Figure 5.1: Particles interacting in thex�y�plane of simple shear flow.

Figure 5.1 displays suspended particles in simple shear flow, the central particle
being located at the stationary velocity plane so that its position is unchanged by the
shear flow. The central particle experiences an influx of neighbouring particles in
the compressive quadrants I and III, whereas in quadrants II and IV neighbouring
particles are being pulled away by the flow. Every particle that ”collides” with the
central particle in quadrant I will encounter a positive∆y displacement. In addition,
its motion in the velocity direction will be hindered, causing a negative displacement
∆x in comparison with the undisturbed trajectory. For particles in quadrant III,∆y< 0
and∆x> 0. In principle, particle motions in the quadrants II and IV would generate
positive values of∆x �∆y, but as a result of the flow asymmetry there is an increased
probability of near contact in the compressional quadrants I and III so that averaging
over all particle configurations results in a negative value ofh∆x ∆yi and a diffusive
componentD̂xy < 0.

Within the same framework it can easily be seen that the other off-diagonal com-
ponents must be zero, as was already shown by the representation theorem. Consider
for exampleD̂yz: interactions in quadrant I lead to positive∆y displacements, but the
sign of∆zdepends on thez�coordinate of the colliding particle. Particles behind the
x-y-plane sketched in figure 5.1 will experience∆z< 0 and particles in front of that
plane∆z> 0. Because of the symmetry of the flow with respect to the plane of shear,
these contributions cancel out in the ensemble averageh∆y∆zi. The concept can also
be used to explain the observations of negativeDxy in granular shear flows (Camp-
bell, 1997), where in absence of hydrodynamics the mechanistic picture is applicable
even more directly.
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5.2.2 Influence of shear flow

The expressions in the preceding subsection are oversimplified in the sense that par-
ticles in shear flow not only experience diffusive displacements. They are also sub-
jected to the macroscopic flow. The influence of the affine flow on the appearance of
shear-induced diffusion in experimental situations is examined in this section.

Following the definitions presented in chapter 2, we define the transition proba-
bility Ptrans(∆x;∆t;x) which represents the probability for a tracer particle to be dis-
placed over a vector∆x during a time interval∆t, starting from positionx. Under the
assumption that shear-induced diffusion is a purely diffusive motion superimposed
on affine motion with the macroscopic shear flow, the evolution of the transition
probabilityPtrans is given by the convective diffusion equation:

∂Ptrans

∂t
=�∇ � (v Ptrans)+∇ �D �∇Ptrans (5.5)

with initial conditionPtrans(∆x;0;x0) = δ(∆x), requiring all particles to start at their
initial positionx0. The bulk velocity is represented byv. For stationary simple shear
flow v = L �x+v0 ex, wherev0 is a translational velocity that determines the location
of the stationary plane.

The solution of equation 5.5 can be obtained (see e.g. Chandrasekhar, 1943; van
Kampen, 1992):

Ptrans(∆x;x;∆t) =
1

(2π)3=2σxσyσz
�exp

 
� δ2

2σ2
x
� (∆y)2

2σ2
y
� (∆z)2

2σ2
z

!
(5.6)

with

δ = ∆x�∆y
Dxy

Dyy
� γ̇∆t

�
y+

∆y
2

�
�v0∆t (5.7)

and

σ2
x = 2 ∆t

 
Dxx+

1
12(γ̇∆t)2 Dyy�

D2
xy

Dyy

!
;

σ2
y = 2 ∆t Dyy; (5.8)

σ2
z = 2 ∆t Dzz

The expressions forδ and σ2
x show that the particle displacements in the velocity

direction, as described in the first term of equation 5.6 are affected by the convective
shear flow and the diffusive coupling termDxy. Both numerator and denominator
reflect this coupling effect.
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The transition probabilityPtrans describes the statistical distribution of particle
displacements. Within the framework of the experimental correlation technique of
chapter 2 they can be related to auto-correlation vectors, which also reflect the mo-
tion of individual tracer particles. The temporal evolution of the Gaussian distri-
bution of equation 5.6 can then be used to evaluate experimental data and measure
self-diffusion coefficients. For diffusion componentsDyy andDzz this is relatively
straightforward, since these components can be extracted relatively easily (see chap-
ter 2 and 3). The displacements in the velocity direction are affected by the shear
flow, which depends on the initial particle positionx (equation 5.7), so that the exper-
imental analysis of the diffusion coefficientsDxx andDxy is complicated considerably.

5.2.3 Distribution under experimental conditions

The first challenge is to find a relation between the experimentally observed distribu-
tion of correlation vectors and the theoretical prediction of equation 5.6 so that the
diffusion coefficientsDxx andDxy can be determined. For the other componentsDyy

andDzz such a method has been described and applied in chapter 2 and 3. For com-
pleteness and clarity, part of the mathematics in those papers is repeated here to pave
the way for more advanced analysis steps required to measureDxx andDxy.

Relating the experimental results –a large set of correlation vectors between tracer
positions in subsequent video images– to the theoretical predictions of the previous
section entails a number of specific problems. In the first place, the experimental
technique is unable to identify individual particles in subsequent images. Therefore
the correlation procedures not only yield auto-correlation vectors that represent the
displacements of individual particle, but it also generates cross-correlation vectors
between different particles. As a result, the total probability of finding a correlation
vector∆x after interval∆t in the system volumeV needs to be written as:

Γ(∆x;∆t) =
Z

V
∑

i

 
P1(x) �

"
Ptrans(∆x;x;∆t)+∑

j 6=i

1
V

P2(x+∆x;x;∆t)

#!
d3x (5.9)

where both summations take place over alli tracer particles in the system.P1(x)
denotes the chance of finding a tracer particle at positionx. Ptrans is the probability
that this specific tracer particle has experienced a displacement∆x during the time
step∆t, whereasP2(x+∆x;x;∆t) is the conditional probability thatanotherparticle
is located atx +∆x provided that the first tracer was atx a time ∆t earlier. The
conditional probabilityP2 can be expressed inPtrans and the pair distribution function
g2(r), which describes the chance of finding two particles a distancer apart within
the same image:

P2(x+∆x;x;∆t) =
Z

V
Ptrans(x+∆x�x0;x0;∆t) �g2(x0�x) d3x0 (5.10)
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The integrand represents the joint possibility of the secondary particle to be located at
positionx0 initially and then making a transitional step towardsx+∆x during interval
∆t.

For a homogeneous suspensionP1(x) = 1=V is constant and equation 5.9 reduces
to:

Γ(∆x;∆t) =
Z

V

�
n Ptrans(∆x;x;∆t)+n2 P2(x+∆x;x;∆t)

�
d3x (5.11)

with n the particle number density.

In addition to the mixing of auto- and cross-correlations, the experimental tech-
nique has another important limitation. It only provides two-dimensional images
that are projections of a three-dimensional imaging volume, while the preceding
equations describe the unbounded three-dimensional space. The observed volume
is bounded by the size of the CCD chip, the magnification of the camera optics and
the focal depth of the optical system. Moreover, image analysis procedures which
identify positions of tracer particles are imperfect. Therefore not every tracer par-
ticle within the image volume will be detected. All these effects have implications
for the experimentally observed distribution of displacement vectors and the associ-
ated analysis steps. When describing the correlation technique in chapter 2, we have
introduced some mathematical tools to account for these effects.

The detection probability of a tracer particle that resides at a positionx is ex-
pressed by a functionS(x). In contrast to our previous work where we implemented
the boundaries of imaging volume by adjusting the limits of integration in equa-
tion 5.11, here we introduce the rectangular shape functionΠ(u), which gives the
same result:

Π(u) =

(
1 0< u< 1

0 elsewhere
(5.12)

We now introduce the functionC3D to represent the experimental three-dimensional
distribution of correlation vectors within the limited imaging volumeVim bounded by
0< x<Wx, 0< y<Wy and 0< z<Wz. Then equation 5.11 can be written as:

C3D(∆x;∆t) = (5.13)Z
V
S(x)S(x+∆x)

�
n Ptrans(∆x;x;∆t)+n2 P2(x+∆x;x;∆t)

�
d3x

with

S(x)= S(x) Π
�

x
Wx

�
Π
�

y
Wy

�
Π
�

z
Wz

�

S(x+∆x)= S(x+∆x) Π
�

x+∆x
Wx

�
Π
�

y+∆y
Wy

�
Π
�

z+∆z
Wz

� (5.14)
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Once the viewing direction of the optical system has been chosen, one of the three
dimensions is lost as a result of projecting the image volume on the two dimensional
plane of the CCD chip. Equation 5.13 can then be evaluated in more detail. In this
paper we specifically aim for the retrieval of the diffusion coefficientsDxx andDxy.
To this purpose the observations must be made along thez�axis, so that the plane
of view is thex� y�plane (plane of shear). The dimensionsWx andWy are then
set by the size (resp. width and height) of the CCD chip and the magnification.Wz

represents the ”depth of focus” of the camera optics: the plane of focus is located at
z= 1

2Wz and particles out of focus by more than1
2Wz cannot be observed. Under these

circumstances it can be assumed that the detection probabilityS(x) has the following
form:

S(x) = Sk(z) S?(x;y) = λ � Sk(z) (5.15)

whereλ is anO(1) constant, since for homogeneous illumination the tracer detection
efficiency over thex� y�plane should be constant and close to unity. Parallel to
the viewing direction, the detection efficiencyS(z) varies strongly, being maximal
–and close to unity– at the focal planez= 1

2Wz and decreasing towards zero near the
boundaries of the imaging volume, forz= 0 andWz.

When viewing along thez�axis, only vectors(∆x;∆y) can be observed by the
CCD camera. Within the mathematical framework this is equivalent to integrating
C3D(∆x;∆t) over the variable∆z:

C2D(∆x;∆y;∆t) =
Z

C3D(∆x;∆t) d∆z (5.16)

By further reducing equation 5.16 and integrating over the velocity direction (∆x),
Dyy can be retrieved directly (chapter 2). In this chapter, however, we are interested
in the displacement component∆x along the velocity axis and the distribution is kept
in its current form.

C2D(∆x;∆y;∆t) is the theoretical description of an experimental distribution of
correlation vectors. Figure 5.2 is a typical experimental example of such a distribu-
tion. The data are presented in the shape of a histogram that reflects the experimen-
tal probabilityPexp(∆x;∆y) to find a vector(∆x;∆y). The set of correlation vectors
was taken from a set of 8000 images at volume fractionφ = 0:35 and strain value
γ̇∆t = 1:10.

Without elaborating on the details that are provided in previous chapters it is suf-
ficient to note that the central peak in figure 5.2 consists of auto-correlation vectors.
The noisy background is the result of cross-correlation contributions. The terms are
separated in the integrand of equation 5.13 and the auto-correlation peak should be
described by the distribution function of equation 5.6 in case of diffusive motion.

The contours of the projections of the histogram along both axes that are in-
cluded in the figure clearly show that the width in the velocity direction (∆x) is orders
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Figure 5.2: Experimental histogram of correlation vectors(∆x;∆y) for an ensem-
ble of 8000 images (γ̇∆t = 1:10 andφ = 0:35); the displacements∆x and∆y are
expressed in pixels, while the probabilityPexp has arbitrary (non-normalized) units.
The contours of projections along both axes are shown as well.

of magnitude larger than in the velocity gradient direction (∆y). The resolution of
the histogram is barely enough to capture the shape of the peak in they�direction
while the shape in thex�direction is very smooth. Returning to equation 5.6 and
5.7, one can see that the displacements in the velocity direction are smeared out by
variations in the macroscopic velocity fieldv(y) within the plane of shear, while the
displacements in they�direction are purely the result of diffusion. However, also in
the velocity direction we would like to retrieve the relatively small effects of shear-
induced diffusion. In the next subsection an approach will be presented to remove
the convective displacements of the shear flow in order to detect diffusion.

5.2.4 Coordinate transformation

The first exponential term of the transition probabilityPtrans in equation 5.6 is a func-
tion of the initial positionx, in particular the vertical positiony. In our experimental
observations this obscures diffusion effects along the flow axis. Moreover, it also
makes direct comparison of the theoretical and experimental data mathematically
complex since the integrand in equation 5.13 depends onx as well. Looking at the
expression forPtrans a coordinate transformation seems the natural way to resolve the
explicit dependence ony:

∆x! u = ∆x� �γ̇∆t
�
y+ 1

2∆y
�
+v0 ∆t

�
ex (5.17)
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where the displacement∆x = (∆x;∆y;∆z) is transformed tou = (ξ;η;ζ).
The transformation is equivalent to adjusting the positions of a tracer particle

before and after the displacement step, at the respective positionsx andx+∆x, in the
following way:

x! x̃ = x+ 1
2 v(y) ∆t = x+ 1

2 [γ̇ y+v0]∆t ex

x+∆x! x̃+u = x+∆x� 1
2 v(y+∆y) ∆t = x+∆x� 1

2 [γ̇ (y+∆y)+v0]∆t ex

(5.18)

The adjustment can be interpreted as the application of local corrections for the affine
shear flow at both ends of the displacement vector. Experimentally, the transforma-
tion of equation 5.17 can thus be performed relatively easily. A list of particle po-
sitions in all the images is available, from which correlation vectors are calculated.
If the parameterṡγ andv0 are known, the particle positions can be subjected to the
transformation of equation 5.18 before calculating the correlation vectors.

The proposed coordinate transformation is not unique: other transformations
could be chosen to remove the dependence ony. Regarding our experimental condi-
tions, however, equation 5.17 represents a logical choice. In section 5.3.2 the exper-
imental procedures will be described using the data set of figure 5.2 as an example.
First the implications for the theoretical predictions of the probability distribution
must be investigated.

Application of the coordinate transformation to equation 5.6 gives the following
result:

P̃trans(u; x̃;∆t) = P̃trans(u;∆t) = T̃1(ξ;η) � T̃2(η) � T̃3(ζ) (5.19)

where the exponent has been split in the following way

T̃1(ξ;η) =
1

σx
p

2π
exp

 
�(ξ�η Dxy=Dyy)

2

2σ2
x

!

T̃2(η) =
1

σy
p

2π
exp

 
� η2

2σ2
y

!
(5.20)

T̃3(ζ) =
1

σz
p

2π
exp

�
� ζ2

2σ2
z

�

The transformed functioñPtrans(u;∆t) is independent of the initial particle position
x̃. It should be noticed that the splitting of the exponent is not unique. By usingP̃trans

as the appropriate weight function for the ensemble averaging, it is straightforward
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to calculate the various components of equation 5.1 in the new coordinates:

hξ ξi = σ2
x +σ2

y

�
Dxy

Dyy

�2

hη ηi = σ2
y (5.21)

hξ ηi =
Dxy

Dyy
hη ηi

hζ ζi = σ2
z

Using the definitions ofσx, σy andσz (eq. 5.8) this can be rewritten as:

hξ ξi = 2∆t Dxx+
1
12(γ̇∆t)2 hη ηi

hη ηi = 2∆t Dyy (5.22)

hξ ηi = 2∆t Dxy

hζ ζi = 2∆t Dzz

Equation 5.22 shows that in spite of subtraction of the macroscopic convective
flow by means of a coordinate transformation, the displacements in the velocity and
velocity gradient direction remain coupled. Physically this means that a diffusive step
η in the y�direction automatically leads to displacements in the velocity direction.
So even if the diffusionDxx would be zero, tracer particles would still spread in the
velocity direction due to the shear flow. The effect grows with(γ̇∆t)2 and is not
of diffusive nature. Beforehξ ξi can be related to the diffusion coefficientDxx the
second term must be subtracted.

In the work of Foss & Brady (1999) the displacements corrected for affine motion
are related directly to the diffusion coefficients (see their eqn. 6). The additional term
in hξ ξi due tohη ηi does not occur. In order to understand this difference it must
be noted that numerical calculations are carried out on another level of description.
While our equations are derived at the Smoluchovski level, where the statistical in-
formation of macroscopical displacements is studied, the simulations are performed
using the Langevin equations for very small time steps. Correction for the affine flow
on the Langevin level not necessarily yields the same results as when the flow field is
compensated for on the Smoluchovski level.

To enable comparison of transformed experimental histograms with the theoret-
ical predictions of equation 5.13, the remaining functions in the integrand must be
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transformed as well:

S(x) ! S(x(x̃)) (5.23)

S(x+∆x) ! S(x(x̃)+∆x(u)) (5.24)

P2(x+∆x;x;∆t) !
Z

V
P̃trans(x+u� x̃0;∆t) �g2(x̃0� x̃) d3x̃0 (5.25)

=

Z
V

P̃trans(u� (x̃0� x̃);∆t) �g2(x̃0� x̃) d3(x̃0� x̃) = P̃2(u;∆t)

The final step denotes a translation of the limits of integration, which is irrelevant
since the domain ranges from�∞ to +∞. Thus the explicitx�dependence has van-
ished forP̃2 as well. The detection functionS remains a function of the positions be-
fore the coordinate transformation,x andx+∆x, because the images are taken in the
original coordinate system. Therefore the image boundaries and detection efficiency
must be expressed in the original reference frame.C3D can now be transformed and
substituted into equation 5.16:

C2D(ξ;η;∆t) =Z ��
n P̃trans(u;∆t)+n2 P̃2(u;∆t)

�Z
S(x(x̃)) S(x(x̃)+∆x(u)) d3x̃

�
dζ

(5.26)

Using equations 5.14 and 5.15 the second integral can be specified:
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(5.27)

where∆(x) is a triangular shape function:

∆(x) =

(
1�jxj for jxj � 1

0 for jxj > 1
(5.28)
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Defining

F(ξ;η) =
Z

Π
�

ỹ
Wy

�
Π
�

ỹ+η
Wy

�
∆

 
ξ+ 1

2 γ̇∆t(2ỹ+η)+ 1
2v0∆t

Wx

!
dỹ (5.29)

and using equation 5.20 the following form can be derived forC2D(ξ;η;∆t):

C2D(ξ;η;∆t) = λ2Wx F(ξ;η)
�
n k1 T̃1(ξ;η) T̃2(η)+n2 k2(ξ;η)

�
(5.30)

with

k1 =

Z
T̃3(ζ)

Z
Sk(z̃) Sk(z̃+ζ) Π

�
z̃

Wz

�
Π
�

z̃+ζ
Wz

�
dz̃ dζ (5.31)

k2(ξ;η) =
Z

P̃2(ξ;η;ζ;∆t)
Z

Sk(z̃) Sk(z̃+ζ) Π
�

z̃
Wz

�
Π
�

z̃+ζ
Wz

�
dz̃ dζ (5.32)

5.2.5 Data analysis

Equation 5.30 can be used for the analysis of experimental data, which are obtained
in the form of a histogram̃Pexp(ξ;η;∆t). T̃1(ξ;η) andT̃2(η) are known functions of
the desired parameterŝDxx, D̂xy andD̂yy. The latter has also been determined already
by means of a simpler analysis technique in chapter 3.F(ξ;η) is a known geometrical
shape function andk1 is a constant function which is independent ofξ andη. The
functionk2(ξ;η) is a priori unknown, but we have verified by calculations that close
to the autocorrelation peakk2 is only a weak function of the displacements and can
very well be approximated as a constant. The equation then reduces to:

C2D(ξ;η;∆t) = F(ξ;η)
�
A T̃1(ξ;η) T̃2(η)+B

�
(5.33)

which can be compared to the measured distribution of correlation vectors, usingA,
B, D̂xx, D̂xy andD̂yy as parameters.

The following consideration is of importance for the comparison of our experi-
mental histograms to the full prediction of equation 5.33. The experimental distribu-
tion is available in the shape of a histogram and the choice of the numerical resolution
could be of influence. The histogram valueP̃exp(ξn;ηm;∆t) represents the number of
vectors that are found within the range:

ξn� 1
2 wξ < ξ� ξn+

1
2 wξ

ηm� 1
2 wη < η� ηm+ 1

2 wη
(5.34)

wherewξ andwη denote the width of the histogram bins along respectively theξ�
andη�axis and thus the resolution. To minimize the influence of the bin distribution
it is advisable not to compare the value ofP̃exp(ξn;ηm;∆t) to the value ofC2D(ξn;ηm)
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at the center of the bin, but rather to the integrated value ofC2D over the entire bin
domain specified in equation 5.34. In particular for strongly varying functions the
results are improved by this method. For example, the histogram of a Gaussian peak
is generally a little wider than the analytical function. Uncorrected comparison with
the theoretical function then results in overestimating the peak width. Since the shape
function F(ξ;η) in equation 5.33 must be calculated numerically anyway, it is rela-
tively straightforward to incorporate the integration of the fit functionC2D(ξ;η;∆t) in
the data analysis. To this purpose we have used a 12 point Gaussian integration over
every bin.

The numerical procedures to extract the diffusion parameters will be explained in
more detail at the end of the experimental section by means of an example.

5.3 Experiments

The analysis of the diffusion componentsD̂xx andD̂xy is essentially a matter of rein-
terpreting experimental data that were used originally for the determination ofD̂yy.
Therefore we do not provide extensive information about the experimental set-up.
For this we refer to chapter 3 where the original data are presented. In this section
we restrict ourselves to essential information about the materials and methods. Fur-
thermore, we illustrate the implementation of the analysis technique described in the
previous section by means of an example.

5.3.1 Materials and methods

The suspensions for this study consisted of PMMA particles in a density and refrac-
tive index matched fluid mixture of demineralized water, zinc-II-chloride and Triton
X-100. The fluid was measured to be Newtonian over the entire range of shear rates
covered by our rheometer (up to 100 s�1) at a viscosity of 3:4 Pa s (23Æ C). The parti-
cles (produced by ICI, class 4F,ρ = 1:172 g=ml, n25

D = 1:491) were sieved repeatedly
to obtain a well-defined size fraction (90�15 µm) and density segregation was ap-
plied to remove the particles that included air bubbles. A small fraction was then
colored black with fabric dye (Rit, CPC International) to function as tracer particles
in the refractive index matched suspension. To mix the particles and the fluid, the sus-
pensions were gently tumbled for a couple of hours. The mixing technique resulted
in a perfectly homogeneous system while minimizing the inclusion of small air bub-
bles. After mixing the suspensions were left to rest in order to remove the inevitable
air and then loaded into the rheoscope (chapter 3 and de Haaset al. (1998)).

The suspension was sheared in a wide radius counter-rotating Couette geometry
with inner and outer radius 117.0 and 121.6 mm. The plane of shear (x� y) could
be observed through the suspension surface (for details see chapter 3). A digital
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CCD camera (JAI, type M-10, 768x582 pixels) was mounted with standard optics
to obtain the desired magnification (field of view 1.10 x 0.83 mm, particle radius
a� 30:8pixels) and depth of focus (ca. 0.4 mm from back to front). The camera was
connected to a PC with frame grabber (Matrox, type Pulsar) with dedicated software
for image grabbing at video rate. In this way, sequences of up to 200 images could
be obtained at controlled intervals of 40 msec (25 images/sec) and multiples thereof.
Storage of the image sequence and repetition of the grabbing process allowed us
to collect up to 8000 images per experimental run at fixed experimental conditions
(γ̇∆t).

The images were analyzed with commercial image analysis software (Optimas,
Media Cybernetics) to extract the positions of tracer particles within the images. The
resulting list of particle positionsf(x;y)igN in all theN images forms the basis of our
analysis procedure.

In this paper measurements will be analyzed for particle volume fractionsφ =
0:20�0:50. The applied shear rate was varied between 0.19 and 0:76 s�1 and the
interval ∆t ranged from 40 to 4000 msec, so that a wide range ofγ̇∆t � 0:007�3:5
could be probed to check the scaling withγ̇∆t.

5.3.2 Example of analysis procedure

By means of an example we explain how the procedures that were derived in sec-
tion 5.2 can be applied in practice.

The list of tracer positionsf(x;y)igN can be used to calculate the correlation vec-
tors (∆x;∆y) between tracer positions in subsequent images. As shown in figure 5.2
the resulting experimental set of correlation vectors, all recorded at the same param-
eter valueṡγ and∆t, can be presented in the form of a histogram, which represents
the experimental probabilityPexp(∆xn;∆ym;∆t) to find a vector(∆x;∆y) that fits into
the numerical bin(n;m).

The graph also illustrated the influence of macroscopic shear flow on the distri-
bution function. To demonstrate this effect more clearly we have plotted the data
of figure 5.2 in another way. Since we have the full information about particle po-
sitions at our disposal we can investigate how the displacements in thex�direction
depend on the meany�position of the particle during the time interval∆t. Figure 5.3
presents the top view of three histograms of this type, which reflects the probability
Pexp(∆x;yave;∆t) for a tracer particle to undergo a step∆x in the velocity direction
when its averagey�position equalsyave=

1
2(2y+∆y), wherey is the initial vertical

position andy+∆y the position at the end of the interval. The lighter the colours, the
higher the probability. When the data are accumulated in aPexp(∆x;x;∆t)�histogram
like figure 5.2, the information about the positionyave is disregarded and the width in
the∆x�direction reflects the sum of all affine displacements.

Since convective flow forms the major contribution to∆x�displacements, the
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Figure 5.3: Top view of three experimental histograms of correlation vectors∆x
as a function of the averagey�position during the time interval,yave; data set is
the same as for figure 5.2 and from left to right the strain values are respectively
γ̇∆t = 0:14, 0.55 and 1.10.

profiles provides information about the macroscopic shear flow. The convective dis-
placements can simply be written as:

∆xave= [γ̇ yave+v0]∆t =
�
γ̇ (y+ 1

2∆y)+v0
�

∆t (5.35)

which exactly matches the coordinate transformation of equation 5.17. The his-
tograms of figure 5.3 indeed display this linearity and the values ofγ̇ and v0 can
be retrieved directly from the data by a linear fit. The accuracy of the estimated val-
ues forγ̇ andv0 is increased by making use of the fact that the correlation plots for
multiple time steps (likėγ∆t0, 4� γ̇∆t0 and 8� γ̇∆t0 in fig. 5.3) should all be described
by the same parameters. Note that our geometry in combination with the reference
frame of image analysis leads to negative values for the shear rate. It can also be seen
that the stationary plane of our counter-rotating flow geometry is located nearly at the
middle of the viewing window.

For Couette flow, theoretical predictions are available for the velocity distribution
over the gap in case of Newtonian fluids, which can be compared to the experimen-
tally determined values. The measured flow profile yielded significantly larger values
for the shear rate. The effect increased with increasing volume fraction. Although
we do not have a quantitative explanation for this phenomenon, deviations from the
Newtonian predictions are not too surprising. In chapter 4 we have shown that non-
colloidal suspensions are non-Newtonian (see also Zarragaet al. (2000) and Gadala-
Maria & Acrivos (1980)). Moreover, in Couette flow it is well-known that particle
migration occurs from the inner towards the outer cylinder. According to the predic-
tions of Phillipset al. (1992) this migratory effect should not very pronounced in our
narrow gap geometry. Although, the particle concentration in the middle of the gap
–where our diffusion measurements are performed– should be even less affected than
the concentrations at the wall, the effects on the velocity profile are unknown. Since
the coordinate transformation of section 5.2.4 is very sensitive to the parametersγ̇
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andv0 we have used the experimental values for the shear rate, since these accurately
represent the actual shear rate in the observation window.

The equations in section 5.2 were all derived for the case of simple shear flow.
However, we have used a Couette geometry. In spite of the large radius (120 mm)
compared to the dimensions of the image window (heightWy = 0:8 mm), curvature
effects could be observed, causing particle displacements of the order of a few pixels.
Since we want to measure minute diffusive displacements these effects could not be
neglected. In addition to curvature, there can be small errors in the camera alignment.
Although the effects of curvature and misalignment on the shape functionF(ξ;η) and
the cross-correlation backgroundB in equation 5.33 are negligible, the additional
particle motion leads to errors in the displacements in thex�direction and thus in
the diffusion coefficientŝDxx andD̂xy. In the appendix it is explained in detail how
second order corrections for the streamline curvature can be made fairly easily.

Once the velocity profile is fully characterised, the route to extraction of the de-
sired diffusion parameters proceeds now as follows. With the shear flow parameters
the corrected experimental distribution of correlation vectorsP̃exp(ξn;ηm;∆t) can be
determined by applying the coordinate transformation of equation 5.18 before cal-
culating the correlation vectors. Tracer particles in the first image of each correla-
tion pair are shifted over a distance+1

2 v(y)∆t and tracers in the second image over
�1

2 v(y+∆y)∆t. Figure 5.4 shows the transformed histogram for the experimental
data used in this example. Note the difference in scales along the displacement axes
in comparison with figure 5.2. The quality of our velocity correction was verified
by slightly changing the parameters and monitoring the resulting peak width in the
x�direction. If the velocity correction deteriorates, this always leads to broadening
of the auto-correlation peak. The corrections based on the fitting of figure 5.3 turned
out to be very accurate.

The width in theξ�direction is significantly smaller than it was in the∆x direc-
tion and is now purely the result of shear-induced diffusion. For a closer look into the
diffusive displacements we have included figure 5.5 which shows the top view of the
histogram in a contour plot for three different values ofγ̇∆t, the middle graph being
equivalent to figure 5.4. The contours are drawn at evenly distributed levels between
the background and top of the Gaussian peak. The effect of increasing noise for large
strain values is evident. Although the graphs are unsuitable for quantitative analysis,
they reveal important qualitative information. In the first place, it can be seen that
the width in theξ�direction is significantly larger than in theη�direction, which
is consistent with the result of Foss & Brady (1999) thatD̂xx > D̂yy. Secondly, the
symmetry axes of the Gaussian peak are rotated relative to theξ�η�axes, so that
D̂xy is non-zero. The direction of the rotation is in agreement with the predictions
in section 5.2.1: the longest axis of the contour lines is located in the quadrant with
positive values ofξ �η. Taking into account that the shear flow in our experimental
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Figure 5.4: Experimental histogram of correlation vectors(ξ;η) after applying the
coordinate transformation of section 5.2.4; data set is the same as for figure 5.2.

set-up is applied in thenegative x�direction (see figure 5.3), this corresponds to a
negative diffusion coefficient̂Dxy.
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Figure 5.5: Contour plots of the corrected distribution of correlation vectors(ξ;η)
for γ̇∆t = 0:14 (a), 1.10(b) and 2.08(c); particle radiusa� 30:8pixels and data set
is the same as for figure 5.2.

In order to extract quantitative measures for the diffusion coefficients we have to
return to section 5.2, in particular to equations 5.33 and 5.8. The first step is to divide
the experimental histogram by the numerically calculated shape functionF(ξn;ηm):

P̃exp(ξn;ηm;∆t)
F(ξn;ηm)

= A T̃1(ξn;ηm) T̃2(ηm)+B (5.36)

where the analytical functions are integrated over the bin(n;m). The right side of
the equation now provides the function to which the histogram can be fitted directly
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by means of a non-linear least square fitting routine, using the Levenberg-Marquardt
method (Presset al., 1986):

P̃exp(ξn;ηm;∆t)
F(ξn;ηm)

= K1 exp

 
�(ξn�K2 ηm)

2

K3
� η2

m

K4

!
+K5 (5.37)

The fit parameters are related to the desired physical quantities in the following way
(see eqn. 5.21):

hξ ξi = 0:5 K3+0:5 K4 K2
2

hη ηi = 0:5 K4 (5.38)

hξ ηi = 0:5 K2 K4

A direct non-linear fit to these parameters was impossible. The denominator in the
exponent ofT̃1 (eqn. 5.36) depends on all three parameters. When the full equation is
used as fit function, convergence problems arise which can be circumvented by using
the fit function of equation 5.37 and then applying the transformation by means of
equation 5.38.

The fitting routine can be applied to histograms for different values ofγ̇∆t and the
development of the parameters with (dimensionless) time can be studied. Rewriting
equation 5.22 and using the scaling of equation 5.2 one obtains:

1
a2

�hξ ξi� 1
12(γ̇∆t)2 hη ηi� = 2 D̂xx γ̇∆t

1
a2 hη ηi = 2 D̂yy γ̇∆t (5.39)

1
a2 hξ ηi = 2 D̂xy γ̇∆t

The quantities on the left can now be plotted against the dimensionless timeγ̇∆t.
In case of diffusive behaviour linear graphs are predicted. The slopes of the linear
regime are a direct measure for the dimensionless diffusion coefficientsD̂xx, D̂xy and
D̂yy. The advantage of the additional graphs is that the linear scaling can be verified
before the data are interpreted in terms of diffusion.

5.4 Results and discussion

The operations described in the previous section were carried out for various volume
fractions. It turned out that meaningful results could only be obtained forφ = 0:20,
0.35 and 0.45. For the experiments atφ = 0:30, 0.40 and 0.50 the data sets (number of
images and number of particles per image) were too small to generate 3D histograms
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(like figure 5.4) of sufficiently high quality for accurate non-linear fits. These concen-
trations are nicely spread over the range were intriguing effects have been observed
before forD̂yy andD̂zz, so that they can be expected to provide an decent overview of
the behaviour of the other diffusion components as well.

For every volume fraction different experimental runs have been carried out and
analyzed. The results forhξξi, hηηi andhξηiwere then averaged, using the variance
of the fitted parameter as weight factor. In figure 5.6 the averaged results are shown
for the three different volume fractions. In comparison to the work described in
chapter 3 we have concentrated on the series for large strain valuesγ̇∆t, since these
data the most relevant for determining diffusion coefficients.

Figure 5.6 displays the evolution of the terms on the left side of equation 5.39.
For all three figures linear regimes can be identified from which diffusion coefficients
can be determined by means of a linear fit. For all volume fractions diffusion in the
velocity direction occurs at larger values ofγ̇∆t. The scales of the plots reveal that
D̂xx is much larger than̂Dxy and D̂yy. This is even more pronounced in figure 5.7
which shows the diffusion coefficients as a function of particle volume fraction. For
D̂xy it must be noticed once again that due to the applied shear, positive values of
hξ ηi correspond to a negativêDxy.

The results can not be compared to other experimental studies. An internal check
was available in the sense that values ofhηηi should be equal to the results forσ2

y as
determined from the more straightforward analysis as presented in chapter 3, since
the underlying data set is the same. For each experimental run we found excellent
agreement within experimental errors of the fit. In figure 5.7 we have used the results
of chapter 3 forD̂yy andD̂zz, since these data are based on more measurements and
therefore more accurate.

The only external reference frame for our experimental results is formed by the
recent Stokesian Dynamics calculations of Foss & Brady (1999). These authors have
numerically calculated the full tensor of shear-induced self-diffusion for the first time.
However, one should be careful when comparing between numerical and experimen-
tal results on shear-induced diffusion, since unresolved discrepancies still exist even
for the well-known componentŝDyy andD̂zz. In particular the volume fraction depen-
dence is qualitatively different (see e.g. Marchioro & Acrivos (2000) for a compari-
son). Therefore quantitative comparison of the results on the newly measured physi-
cal quantitiesD̂xx andD̂xy is not very useful. However, qualitatively, some interesting
features can be found for both experimental and Stokesian Dynamics results.

Foss & Brady (1999) observe thatjD̂xyj is lower thanD̂yy. At the concentration
φ =0:45, for which they present numbers, these quantities are respectively -0.033 and
0.048. In our studŷDxy is independent ofφ within experimental errors. Atφ = 0:45
its value is lower than̂Dyy.

Experiments and numerical results furthermore agree on a decreasing anisotropy
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Figure 5.6: Averaged displacements (left terms of equation 5.39) as a function of
dimensionless timėγ∆t for three volume fractionsφ = 0:20 (�), 0.35 (O), 0.45 (�);
the lines represent linear fits for the determination of diffusion coefficients.
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Figure 5.7: Volume fraction dependence of dimensionless diffusion coefficients of
shear-induced self-diffusion; (�) D̂xx, (H) �D̂xy, (Æ) D̂yy and (M)D̂zz, with the latter
two taken from chapter 3; the two graphs show the same data on different scales.

D̂xx=D̂yy with increasing concentrationφ. However, in our experiments,̂Dxx is an
order of magnitude larger than the other diffusive components, which is much higher
than suggested by numerical results. All in all it can be concluded that there are
striking similarities, but also unresolved quantitative differences between numerical
simulations and experiments, which require further study.

5.5 Conclusions

In previous papers we have presented an experimental correlation technique which
was originally developed for measuring shear-induced self-diffusion of non-colloidal
suspensions of hard spheres in the velocity gradient and vorticity direction. In this
paper we have shown that the technique can be used to measure the full diffusion
tensor, including the two components which have so far not not been determined
experimentally,D̂xx andD̂xy. The first known experimental results for these quantities
in concentrated non-colloidal suspensions are presented.

The main difficulty in the analysis procedure is to eliminate the large displace-
ments due to the macroscopic shear flow, so that relatively small diffusive displace-
ments can be detected. We have solved this problem by means of a coordinate trans-
formation which is analogous to correcting the particle positions at both ends of the
correlation vector for the local flow conditions. When we take into account various
effects of the experimental set-up, the theoretical particle distribution, which is ob-
tained by solving the convection-diffusion equation on the Smoluchovski level, can
be fitted directly to experimental data so that statistical properties of the particle dis-
placements can be measured. The evolution of the parameters (hξ ξi, hη ηi andhξ ηi)
for increasing strain valueṡγ∆t is used to verify if the particle motion is diffusive and
to calculate the diffusion coefficients.
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Because of the complexity of the analysis steps it is difficult to get accurate quan-
titative results. Very large data sets are required. In our experiments we collected
sufficiently reliable data over a long range of strain valuesγ̇∆t for three particle vol-
ume fractions:φ = 0:20, 0.35 and 0.45.

Although the data are not extremely accurate in the quantitative sense, qualita-
tively unique observations have been done. We have found that the diffusion compo-
nent in the velocity direction,̂Dxx is an order of magnitude larger than in the velocity
gradient direction,̂Dyy.

The component̂Dxy is negative. The sign is in agreement with the expectations
for non-colloidal systems, where there is an increased concentration of particles along
the compressional axis and a deficit in the extensional zone. Its value is independent
of concentration and slightly lower than̂Dyy aboveφ = 0:20.

The only reference frame for our results is formed by the recent Stokesian Dy-
namics calculations of Foss & Brady (1999), where the quantities have been cal-
culated numerically for the first time. Quantitative comparison of the results on the
newly measured diffusion coefficients is not very useful, because unresolved discrep-
ancies exist between numerical and experimental work for the well-known compo-
nents. However, important qualitative similarities can be identified. Foss & Brady
(1999) also observed that̂Dxy is negative and that its magnitude is lower thanD̂yy

for φ = 0:45. In addition, experiments and numerical results agree on a decreasing
anisotropyD̂xx=D̂yy with increasing concentrationφ.

Appendix A: Curvature correction for Couette flow

The curvature of a Couette geometry causes small complications in the data analysis
that is described in section 5.2, especially when the viewing window is misaligned
with the flow field. The misalignment can be due to small errors in the alignment
with respect to the axis of rotation or even due to inaccuracy in the position of the
CCD chip inside the camera. Although the effect is a higher order correction and
the equations describing the particles distributions do not change significantly, it is
relevant for the work in this paper, since we aim for measuring diffusion coefficients
that are small compared to the convective flow displacements. This appendix contains
a detailed survey of the effects of misalignment in a curved geometry.

Figure A.2 provides the reference frame for describing misalignment. In the
ideal situation, the center of the viewing windowO is positioned so that they�axis
intersects the axis of rotation. In case of misalignment,O is shifted over a distance
h in the x�direction. H being the distance from the rotational axis to thex�axis,
this is equivalent to an angle of misalignmentθ with tanθ = h=H. Furthermore, the
coordinates(x;y) define the position within the viewing window relative to its center
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Figure A.2: Definition of variables in case of misalignment in curved Couette flow.

O andr denotes the distance from the rotational axis to this point:

r2 = (h+x)2+(H�y)2 (A.2)

Since the geometry is a Couette flow, the rotational velocityω, shear ratėγ and
translational velocityv = (vx;vy) at any point in the window can be written as:

ω(r) = α+
β
r2 (A.3)

γ̇(r) = r
dω
dr

=�2 β
r2 (A.4)

vx(x;y) = (ω� r)x =

�
α+

β
r2

�
(H�y) (A.5)

vy(x;y) = (ω� r)y =

�
α+

β
r2

�
(x+h) (A.6)

The parametersα andβ are related to geometrical parameters like the inner and outer
radius,Ri andRo, and the difference in rotational speed between the cylinders,Ω.
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The velocity can be approximated with a Taylor series around the origin:
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wherer2
o = H2+h2, γ̇o = �2β=r2

o, vo = α ro + β=ro and we have made use of the
fact thath=ro � 1 andH � ro. The second term ofvx represents the dominant devi-
ation from planar shear flow. It is the contribution of curvature and misalignment to
the particle displacements in thex�direction and is responsible for additional broad-
ening of the Gaussian auto-correlation peak. For realistic values of the geometrical
parameters the other terms can be neglected. In they�direction no significant effects
can be noticed at all.

The preceding equations A.7 and A.8 can be related to experimental data by
plotting the correlation data in two different ways. In the first place, a histogram like
figure 5.3 shows how the average horizontal displacement∆xconv= hvxi∆t depends
on the average vertical position of the particles during the interval (yave). A similar
graph can be made for the vertical peak displacement∆yconv= hvyi∆t. These two
histograms can be fitted to the equations:

∆xconv = A1 �yave+B1 (A.9)

∆yconv = A2 �yave+B2 (A.10)

and comparison of the parametersA1, A2, B1 and B2 with equations A.7 and A.8
can be used to perform the full correction for convective displacements, so that the
corrected histogram̃Pexp(ξ;η) can be calculated accurately.

In our experiments, we have found misalignment anglesθ of typically 0.7Æ ,
which is hardly surprising.
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Chapter 6

Collision Model for Shear-Induced Self-Diffusion

6.1 Introduction

The contents of this thesis is strongly experimentally oriented. A novel technique
has been developed and applied to measure various aspects of shear-induced self-
diffusion. Our results have contributed to the quantification of shear-induced diffu-
sion, which has improved considerably in recent years for both gradient and self-
diffusion. Numerical techniques have made major evolutionary steps as well, so that
more reliable data are available (Foss & Brady, 1999; Marchioro & Acrivos, 2000).
In spite of the progress, there are still significant discrepancies between experimental
and numerical results. As we described in section 1.2.2, where a literature review
was presented, the situation is even more challenging at the theoretical front: there
have been only a few attempts to model shear-induced diffusion and many aspects of
experimental results have not been captured by theoretical predictions yet.

The aim has been to find a physically acceptable model for shear-induced self-
diffusion which captures the main characteristics of experimental results (see chap-
ter 2 to 5 and Phan & Leighton (1993)). The most salient features, the combination of
which has not been predicted so far by any model, are the scaling of diffusion coeffi-
cients withγ̇ a2, the characteristic diffusive timescale (γ̇∆t � 1), the plateau value of
the diffusion coefficients with increasing particle volume fraction and the measured
anisotropy of the diffusive process.

Here we present a simple collision model, which approaches self-diffusion in a
similar way as Leighton & Acrivos (1987) and Phillipset al. (1992) treated gradient
diffusion. Following the mechanistic concept of these authors, the model is based on
the assumption that individual particles move diffusively under the action of excluded
volume effects with neighbouring particles on different streamlines in the shear flow.
Although the particle motion during each encounter is of deterministic nature, the
randomness of the initial conditions can still lead to diffusive displacements, when
the effect is averaged over many particles.
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The basis of our model is formed by the assumption that ’collisions’ between par-
ticles can be modelled as effective two-particle processes which proceed unhindered
until terminated by the presence of neighbouring particles. As will be shown later
on, we are then able to calculate particle trajectories as a function of initial particle
positions. Averaging the displacements over all configurations then provides a mea-
sure for shear-induced self-diffusion. Although the model is rather crude in the sense
that it does not account for the complex hydrodynamics, its simplicity provides inter-
esting insights into the nature of the microscopic processes that could be responsible
for shear-induced self-diffusion. In contrast to the model of Phillipset al. (1992)
for gradient diffusion, which incorporates adjustable parameters for comparison with
experimental data, this approach does not have free parameters.

In the next section the model definitions will be explained and the implications
of our key assumptions will be discussed. The remaining part of the chapter is then
used to calculate and analyze results.

6.2 Model definitions

Within the collision model we use the following definitions for the coordinate sys-
tem. Consider a simple shear field in which the velocity of the fluid (in Carthesian
coordinates) is given by:

v = γ̇ y ex (6.1)

thex�axis being chosen in the velocity direction, they�axis in the gradient and the
z-axis in the vorticity direction. The initial orientation of a particle pair on approach
is described by the anglesθ andϕ as illustrated in figure 6.1, wherer12 is the end-end
vector between the centers of the particles.

Figure 6.1: The frame of reference and spherical coordinates used.
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Using spherical coordinates(r;θ;ϕ) the following unit vectors can be defined:

er = cosθ ex+sinθ es

eθ = �sinθ ex+cosθ es (6.2)

eϕ = �sinϕ ey+cosϕ ez

es = cosϕ ey+sinϕ ez

wherees is the unit vector that defines the projection ofer on they� z�plane. In
this framework it can easily be seen that two particles meet at the point where their
relative positionr12 is given by:

r12 = 2a er (6.3)

a being the particle radius.
Now the framework has been set, model assumptions can be made on the evolu-

tion of the encounter between two particles. One important issue is how to choose the
evolution of relative positions of the particles during this process. In a concentrated
suspension the hydrodynamic interactions between particles are extremely compli-
cated. In Stokesian Dynamics calculations, these interactions are taken into account,
but the methods is computationally intensive and in order to generate solutions still
assumptions must be made. So here we try to find a simplified approach to reduce
the complexity of the problem.

For dilute suspensions under shear flow trajectories of particle during collisions
have been calculated (e.g. da Cunha & Hinch, 1996). In the case of ideal hard spheres
without interaction, the problem is symmetric and no net displacements can be found
when the process is completed. When interaction forces are introduced, which could
for example represent finite particle roughness, this introduces asymmetries and leads
to net displacements. During the trajectory, the largest displacements occur in the
velocity gradient direction (y), while only minor deviations in the vorticity direction
(z) take place. When many of these interactions take place, the interaction forces thus
lead to self-diffusion with a very large anisotropyDyy=Dzz.

For concentrated however, experimental results have shown that the motion does
not occur in the plane of nearly constantz. In chapter 4 we have presented particle
trajectories which demonstrate that the displacements in the vorticity direction are
of O(a). Moreover experiments on shear-induced self-diffusion (chapter 3, Phan &
Leighton (1993)) also indicate that diffusivityDzz is of the same order of magnitude
asDyy. So for modelling the trajectories in concentrated suspensions, the results for
dilute suspensions cannot be used.

In our model we propose that particles move affinely when not restricted by
excluded volume effects. This means that particles move along the streamlines of
macroscopic flow as long as they have not encountered another particle (jr12j> 2a):

v12 = v∞ = γ̇ y ex for jr12j> 2a (6.4)
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At contact only the tangential component is left:

v12 = v∞ (I �er er) for jr12j= 2a (6.5)

wherey denotes the distance between particle centers in the velocity gradient direc-
tion.

A consequence of this assumption is that two particles move relative to each
other in the plane of constant angleϕ, spanned by the velocity directionex and the
unit vectores(ϕ0) that defines the orientation at first contact. Since particles move
affinely until contact, the angleϕ0 is equal to the approach angle. It is clear that this
choice implicates significant displacements in the vorticity direction and thus resolves
one of the major issues, but how meaningful is this particular choice? The restriction
of particles to the plane of constantϕ means that only forces in the plane spanned by
er andex are taken into account. In theer�direction the most important force can be
expected to be the excluded volume effect which prevents particles from overlapping
and in the velocity direction there is a drag force of the macroscopic shear flow. Thus
our model assumption about the particle trajectory is similar to what would be found
in Brownian Dynamics simulations without hydrodynamics at high P´eclet number.
For a simple model such an assumption seems acceptable.

Another important element of modelling the two-particle motion during the en-
counter is the cut-off criterion. When does a collision end? Here we used the fol-
lowing concept: when two particles rotate around each other, the collision is ended
either when the angleθ = π=2 is reached –thenv0

rel?er–, or when a particle experi-
ences a new collision with an incoming third particle. The maximum angleθ = π=2
is consistent with the idea that the excluded volume effect dominates, since this effect
terminates instantly when the particles enter the extensional region of shear-flow and
are pulled apart by the flow. If the concentrations are high, the average time between
subsequent collisions is shorter than the time needed to complete the interaction and
then the latter criterion is used: collisions are finished when an interaction with new
particle occurs.

Under these model assumptions it is possible to determine the particle trajectories
and average the resulting displacements over all initial configurations. Thus diffusion
coefficients can be extracted as a function of particle volume fraction.

6.3 Collision frequency

Using the definitions in the preceding section, the relative position between two par-
ticles (equation 6.3) can be rewritten as

r12 = 2a(cosθ ex+sinθ es) (6.6)
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The relative velocity between the particles at the start of the collision can now be
calculated by means of equation 6.1, noting that the only relevant parameter is the
relative position in theey�direction:

v12 = 2 γ̇ a sinθ cosϕ ex (6.7)

The particle flux onto a tagged particle can then be estimated as:

j = nv12 = 2n γ̇ a sinθ0 cosϕ0 ex (6.8)

whereθ0 andϕ0 define the initial orientation of the colliding particle pair;n repre-
sents the number density of particles in the suspension.

The collision rate within a certain space angledṄ=dΩ is now given by

dṄ
dΩ

=�4a2 j �er =�8n γ̇ cosϕ0 a3 sinθ0 cosθ0 (6.9)

and usingn= 3φ=4π a3 the total collision rate per particle is then equal to

Ṅ = 2
Z

Ω0

dṄ
dΩ

dΩ

= �12
π

φ γ̇
Z π

π=2
sin2 θ0 cosθ0 dθ0

Z π=2

�π=2
cosϕ0 dϕ0

=
8
π

φ γ̇ (6.10)

where the integral is taken over the space angleΩ0 bounded byπ=2 < θ < π and
�π=2< ϕ < π=2, one of the compressive zones of the shear flow (x< 0, y> 0). The
factor 2 in equation 6.10 is needed to account for collisions in the other compressive
region (x> 0, y< 0), symmetrical relative to the center of the tagged particle.

Consequently, the probability that a given collision occurs with orientationθ0;ϕ0

is given by the functionΦ(θ0;ϕ0):

Φ(θ0;ϕ0) =
(dṄ=dΩ)R

Ω0(dṄ=dΩ)dΩ
=� 3

2
cosϕ0 cosθ0 sinθ0; (6.11)

where the probability has been normalized over only one compressional quadrant,
since our calculations in the remainder of this chapter will be carried out on this basis
as well, so that the factor 2 as applied in equation 6.10 can left out.

The mean time between two collisions,τ, follows directly from equation 6.10:

τ =
1

Ṅ
=

π
8φ γ̇

(6.12)
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6.4 Particle trajectory

To obtain the particle displacement during a collision we describe the motion with
respect to the center of mass of the two colliding particles. The initial position of the
incoming particle relative to the center of mass is then given by (equation 6.6)

r1 = a(cosθ0 ex+sinθ0 es(ϕ)) (6.13)

Applying equation 6.5 the following expression can now be derived for the ve-
locity during the collision phase:

v = v∞ � (I �erer) (6.14)

= a γ̇ cosϕ0 sin2θ(sinθ ex�cosθ es)

while the undisturbed velocity without interaction would have been given by:

v∞ = a γ̇ cosϕ0 sinθ ex (6.15)

With reference to section 6.2 we then introduce the angleθ1 that is defined in
such a way that the average time between subsequent collisions equals the average
duration of the collisions. Each collision then continues whileθ0 � θ � θ1. The
cut-off angleθ1 can be estimated from the influx of particles and depends on the
particle volume fractionφ. The angular speeḋθ is given byθ̇ =�γ̇ cosϕ0 sin2θ, so
the duration of a collision is given by

∆t =
�1

γ̇ cosϕ0

Z θ1

θ0

dθ
sin2θ

=
1

γ̇ cosϕ0
(cotθ1�cotθ0) (6.16)

We obtain a value forθ1 from the following consideration: if all collisions would
stop at a fixed value forθ1, the average value of∆t can be calculated:

h∆ti=
Z π=2

�π=2

Z π

π=2
∆t Φ(θ0;ϕ0) sinθ0 dθ0 dϕ0 =

π
2γ̇

(1+cotθ1) (6.17)

This timeh∆ti must be smaller than or equal toτ, i.e.

cotθ1 =

(
1

4φ �1 for φ > 1
4

0 for φ� 1
4

(6.18)

The displacements can be obtained by integration of the velocity (eq. 6.14) minus
the undisturbed velocity (eq. 6.15) at that position:

s =

Z ∆t

0
(v�v∞)dt =�

Z ∆t

0
v∞ �erer dt

= a
Z θ1

θ0

�
sinθ cos2θ ex+sin2θ cosθ es

� dθ
sin2 θ

= a (sinθ1�sinθ0) es+a (f(θ1)� f(θ0)) ex (6.19)
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with

f(θ) = cosθ+ 1
2 ln

�
1�cosθ
1+cosθ

�
(6.20)

6.5 The diffusion tensor

The relevant components of the diffusion tensorD can be calculated by means of the
following equations:

Dxx =
hsx sxi

2τ
=

4
π

φ γ̇ a2hs̃x s̃xi

Dyy =
hsy syi

2τ
=

4
π

φ γ̇ a2hs̃y s̃yi

Dzz =
hszszi

2τ
=

4
π

φ γ̇ a2hs̃z s̃zi (6.21)

Dxy =
hsx syi

2τ
=

4
π

φ γ̇ a2hs̃x s̃yi

wheres̃= s=a is scaled on the particle radius. The averaging over the particle steps
must be performed usingΦ (eq. 6.11) as weight function:

h�i=
Z π=2

�π=2

Z π

π=2
(�) Φ(θ0;ϕ0) sinθ0 dθ0 dϕ0 (6.22)

The dyadhs̃ s̃i can be split into its components along thees andex axes in the
following way:

s̃ s̃ = (sinθ1�sinθ0)
2 eses+(f(θ1)� f(θ0))

2 exex+

(sinθ1�sinθ0)(f(θ1)� f(θ0))(exes+esex) (6.23)

Since the unit dyadses es andex es depend onϕ = ϕ0 and the coefficients are only
functions ofθ0, the averaging integrals overθ0 andϕ can be separated, leading to:

hs̃ s̃i= h(sinθ1�sinθ0)
2iθ0 hesesiϕ + h(f(θ1)� f(θ0))

2iθ0 exex

+ h(sinθ1�sinθ0) (f(θ1)� f(θ0))iθ0

�hexesiϕ + hesexiϕ
�

=
�
sin2θ1 h1iθ0 + hsin2 θ0iθ0�2sinθ1 hsinθ0iθ0

�hesesiϕ
+
�
f2(θ1) h1iθ0 + hf2(θ0)iθ0�2 f(θ1) hf(θ0)iθ0

�
exex

+[sinθ1 f(θ1) h1iθ0 + hsinθ0 f(θ0)iθ0�sinθ1 hf(θ0)iθ0�hsinθ0iθ0 f(θ1)]��hexesiϕ + hesexiϕ
�

(6.24)
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The ϕ�averages over the unit dyads can now be calculated by expressinges in
Carthesian coordinates:

hesesiϕ = 1
2

Z π=2

�π=2
(cosϕ ey+sinϕ ez)(cosϕ ey+sinϕ ez) cosϕ dϕ

= 2
3 eyey+

1
3 ezez

hexesiϕ = hesexiϕ = 1
2

Z π=2

�π=2
ex (cosϕ ey+sinϕ ez) cosϕ dϕ

= π
4 exey (6.25)

and theθ0�averaging of the remaining terms results in:

hsinθ0iθ0 = 0:750000

hsin2 θ0iθ0 = 0:600000

hf(θ0)iθ0 = 0:196350 (6.26)

hf2(θ0)iθ0 = 0:107983

hsinθ0 f(θ0)iθ0 = 0:100000

Combining these results the components ofhs si in the Carthesian coordinate
system finally become:

hs̃x s̃xi = 0:107983+ f2(θ1)�0:392700 f(θ1)

hs̃y s̃yi = 0:4+ 2
3 sin2 θ1�1:0 sinθ1

hs̃z s̃zi = 0:2+ 1
3 sin2 θ1�0:50 sinθ1 (6.27)

hs̃x s̃yi = π
4 (0:1�0:75 f(θ1)+sinθ1 f(θ1)�0:196350 sinθ1)

hs̃y s̃xi = π
4 (0:1�0:75 f(θ1)+sinθ1 f(θ1)�0:196350 sinθ1)

whereθ1 =
π
2 if φ� 0:25 andθ1 = π+arctan

�
4φ

1�4φ

�
if φ > 0:25.

Equations 6.21 and 6.27 reveal a number of characteristic results. In the first
place it should be noticed that the collision model correctly predicts the scaling of
shear-induced self-diffusion witḣγ a2. Although this might not be very surprising
regarding the ease with which the scaling effects can be predicted (see 5.2.1), any
model of physical relevance should be in agreement with this fundamental property.

Secondly, the anisotropyDyy=Dzz between the velocity gradient and vorticity di-
rection is equal to 2 in our model. This is directly the result of our model assumption
that particle pairs move within the plane of constant angleϕ during their encounter.
Averaging over all possible initial anglesθ0 andϕ0 leads to the geometrically deter-
mined anisotropy of 2.

Using equation 6.21 all the relevant components of the diffusion tensor have been
calculated and plotted in fig. 6.2 in dimensionless form.
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Figure 6.2: The calculated diffusion coefficients, scaled onγ̇ a2, as a function ofφ.

6.6 Discussion

Considering its simplicity, the results of the simple collision model are quite interest-
ing when compared to numerical and experimental observations.

Quantitatively the collision model predicts diffusion coefficients that are of the
proper order of magnitude. ForDyy andDzz the values are almost a factor 4 lower
than experimental data. However, most numerical data that have been calculated with
Stokesian Dynamics techniques are lower than experimental results as well, roughly
by a factor 2. Only the recent data of Marchioro & Acrivos (2000), who extrapolate
their results to infinite system size, approach the experimental values. For a simple
model without adjustable parameters, the quantitative agreement is remarkable.

Another remarkable feature is the volume fraction dependence. For volume frac-
tions above 25% the curves level off significantly, in particularDyy andDzz. In terms
of our model it is the result of the fact that above this critical concentration the av-
erage duration of an interaction is shorter than the time that is needed to complete
the trajectory toθ = π=2. Therefore an increase in collision frequency automatically
leads to smaller displacement steps. The two effects apparently cancel out in the
y� andz�direction, while the diffusion in the velocity direction and thus the cou-
pling termDxy remain ascending functions of the particle volume fractionφ. This
behaviour differ from theoretical scaling predictions of Brady & Morris (1997), who
predict the step size to remains ofO(a) even at high concentrations, so that diffusion
grows when the frequency of interaction becomes higher. Experiments have shown a
plateau at high volume fractions (see chapter 2 and 3). Although the transition in ex-
periments occurs at a somewhat higher volume fraction, aroundφ = 0:35, the effect
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is noteworthy.
As noted in the preceding section, the observed anisotropy is purely geometri-

cal and a result of the model assumption that particles move in the plane spanned
by the velocity direction and their initial separation vector. The assumption seems
reasonable if central forces are dominating the particle collision, which would be the
case if excluded volume effects play an important role. Thus we can account for the
experimentally observed ratioDyy=Dzz� 2.

Although the collision model correctly predicts the negative sign ofDxy, there
seem to be important discrepancies with our experimental results as reported in chap-
ter 5 for the diffusion componentsDxx andDxy, in particular considering the volume
fraction dependence of these parameters. It must be noted however that our exper-
imental results are the first attempts to measure these diffusive quantities. The ade-
quacy of the collision model can hardly be assessed on the basis of those results, but
the issue definitely deserves attention.

All in all the collision model described in this chapter, shows that characteristic
features of shear-induced self-diffusion can be captured by means of a simple mech-
anistic picture. Key elements have been the assumptions of effective two-particle
encounters, the direction of particle trajectories during the interaction phase and the
cessation of collisions due to the influx of third particles.
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Summary

Suspensions consist of solid particles dispersed in a liquid. In practice they are for ex-
ample used for large-scale transport of particulate materials like sand. During oil and
gas drilling suspensions are utilized for the transport of rock cuttings. Furthermore
they can be found in industry in the production of foods, paint and paper. Knowledge
of the flow properties of suspensions is therefore of practical interest and forms an
important research area in rheology.

This thesis contains the results of an experimental investigation of ’shear-induced
diffusion’. It is by now well-known that individual particles in concentrated suspen-
sions of non-colloidal particles (> 10 µm) exhibit a fluctuating motion under influ-
ence of an externally applied flow field. The process can be characterized as diffusion
and is caused by the fact that particles on neighbouring streamlines are forced to pass
each other. The interactions are asymmetrical and lead to particle displacements.

In geometries with an inhomogeneous shear rate or in case of inhomogeneities
in the particle distribution, the process leads to transport of particles, referred to as
gradient diffusion. In pipe flow, for example, particles migrate towards the center of
the pipe. In practice this is a potential source of trouble, since it can influence mixing
and heat transfer. In homogeneous systems migration is absent, but individual parti-
cles still display diffusive motion, the so-called self-diffusion. In understanding the
flow properties of suspensions, shear-induced self-diffusion is therefore an important
physical quantity.

A novel method has been developed to measure shear-induced self-diffusion in
concentrated suspensions of non-colloidal hard spheres. The technique is based on
optical tracing. In order to have optical access to a concentrated suspension, the
suspending liquid was refractive index matched with the spheres. To this transparent
suspension a small fraction of coloured particles was added. These tracers are visible
with a CCD camera. The camera is used to collect images of a flowing suspension.
The images are then subjected to image analysis to determine the positions of tracer
particles in every image. The tracer positions in subsequent images are compared.
By collecting information for a large number of image combinations, which have
been obtained under identical circumstances, a statistical analysis can be made of the
particle motion. The nature of the motion can be investigated through the evolution
of displacement statistics and in case of diffusion the diffusion coefficient can be
determined.

The most powerful advantage of the technique over existing methods is the pos-
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sibility to study particle motion over a time interval (the relevant dimensionless time
being the strain, the product of shear rate and time). Thus the nature of the particle
motion can be checked before diffusion coefficients are extracted. In addition, the
transition from non-diffusive to diffusive motion can be examined in detail.

The first part of the thesis describes the development of the experimental tech-
nique and the application to concentrated hard sphere suspensions with particle vol-
ume fractions ranging from 20 to 50%. The first measurements on diffusion in the
velocity gradient and vorticity direction were carried out in a set-up with non-ideal
flow conditions. For large time steps too many particles left the observation window
of the camera to obtain reliable statistical information. In chapter 3 this problem
has been solved by using an advanced ’counter-rotating’ geometry. In this apparatus
particles were kept within view much longer and diffusion and measurements could
be performed over a sufficiently large range of time to accurately determine diffusion
coefficients. The results were in good agreement with literature data which have been
obtained by means of other methods.

The second part reports on more detailed analysis of the data. In chapter 4 dif-
ferent approaches are presented to investigate the motion of particles in concentrated
suspensions: the paths of individual tracer particles, the self-diffusion as measured
with the newly developed statistical method and rheological measurements, which
show the macroscopical relation between stress and deformation. Both diffusion and
rheology are the result of the underlying microstructure and must therefore be corre-
lated.

It is demonstrated in chapter 5 how the results of the diffusion measurements
can be utilized to obtain values for all components of the diffusion tensor. In addi-
tion to the diffusion coefficients in the velocity gradient and vorticity directions, the
two remaining components can be determined: the diffusion in the velocity direction
and the off-diagonal component. The off-diagonal component contains the coupling
between motion in the velocity and velocity gradient direction. The first known ex-
perimental values for these quantities are presented.

Finally, chapter 6 contains a simple collision model. The dynamics of concen-
trated suspensions are quite complicated and a full solution of the problem is virtually
impossible. The collision model, which is essentially based on two-particle interac-
tions, has been developed to investigate if simple mechanical concepts can be used to
model shear-induced self-diffusion. The model is based on some simple assumptions
that are directly related to characteristic behaviour which was also observed in our
experiments.
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Samenvatting

Vaste deeltjes gedispergeerd in een vloeistof vormen een suspensie. In de praktijk
worden suspensies bijvoorbeeld toegepast voor grootschalig transport van materialen
als zand. Tijdens het boren naar olie en gas worden ze gebruikt om boorgruis af te
voeren. Bovendien komt men suspensies in de industrie tegen bij de produktie van
bijv. voedingsmiddelen, verf en papier. Kennis van de stromingseigenschappen van
suspensies is daarom van praktisch belang en vormt een belangrijk aandachtsgebied
binnen de reologie.

Dit proefschrift beschrijft de resultaten van een experimenteel onderzoek naar
’hydrodynamische diffusie’. Het is bekend dat in geconcentreerde suspensies van
niet-colloı̈dale deeltjes (> 10µm) onder invloed van een opgelegd stromingsveld de
individuele deeltjes een chaotisch bewegingspatroon vertonen dat gekarakteriseerd
kan worden als diffusie. Deze diffusie wordt veroorzaakt doordat deeltjes op ver-
schillende stroomlijnen elkaar willen passeren. In een geconcentreerd systeem zijn
deze interacties niet-symmetrisch, zodat de deeltjes een verplaatsing ondervinden.

In een stromingsgeometrie met een inhomogene afschuifsnelheid of in geval van
inhomogeniteiten in deeltjesconcentratie kan dit diffusieproces leiden tot een trans-
port van deeltjes, ook wel gradi¨ent diffusie genoemd. In een pijpstroming zullen de
deeltjes bijvoorbeeld naar het centrum van de pijp migreren. Als er geen rekening
mee wordt gehouden kan dit in de praktijk voor problemen zorgen. In een homogeen
systeem treedt het transport niet op, maar individuele deeltjes vertonen nog altijd een
diffusief bewegingspatroon, de zogenaamde zelf-diffusie. Om de eigenschappen van
suspensies te kunnen begrijpen is zelf-diffusie dus een belangrijke fysische grootheid.

Er is een nieuwe methode ontwikkeld om hydrodynamische zelf-diffusie te meten
in geconcentreerde suspensies van niet-colloidale harde bollen. De techniek is geba-
seerd op optische waarneming. Om in een geconcentreerde suspensie optisch iets
te kunnen onderscheiden is de vloeistof zo gekozen dat de brekingsindex gelijk is
aan die van de deeltjes. De suspensie is dan transparant. Een kleine fractie van de
bollen is vervolgens gekleurd en deze deeltjes zijn zichtbaar. Met behulp van een
videocamera worden opnamen gemaakt van de suspensie in een stroming. Op deze
beelden wordt vervolgens beeldanalyse toegepast om in elk videobeeldje de posi-
ties van de gekleurde deeltjes te bepalen. De posities van deeltjes in opeenvolgende
videobeelden worden vergeleken. Door informatie te verzamelen voor een groot aan-
tal combinaties van beeldjes, die onder identieke omstandigheden zijn verzameld,
wordt de basis gelegd voor statistische analyse van de deeltjesbeweging. Als het
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statistisch gedrag zich op een zekere manier ontwikkelt is sprake van diffusie en
wordt de diffusieco¨efficiënt bepaald.

Het belangrijkste voordeel van de methode boven reeds bestaande technieken
is de mogelijkheid om de deeltjesbeweging te bestuderen over een tijdsinterval (de
relevante dimensieloze tijd is eigenlijk devervorming, het produkt van tijd en af-
schuifsnelheid). Op deze manier kan beter worden gecontroleerd of inderdaad sprake
is van een diffusief proces, alvorens de diffusieco¨efficiënt te bepalen. Tevens kan zo
het overgangsgebied van niet-diffusief naar diffusief gedrag worden onderzocht.

Het eerste deel van dit proefschrift beschrijft de ontwikkeling van de nieuwe
meetmethode en de toepassing voor geconcentreerde suspensies van harde bollen
met een deeltjesconcentratie tussen de 20 en 50%. De eerste metingen met deze
techniek voor diffusie in de snelheidsgradi¨ent- en vorticiteitsrichting (hoofdstuk 2)
zijn uitgevoerd in een experimentele opstelling, waarin het stromingsveld niet opti-
maal was. Naarmate de tijdstappen tussen beelden groot werden, stroomden teveel
deeltjes uit het blikveld van de videocamera om voldoende informatie over te houden
voor betrouwbare statistiek. In hoofdstuk 3 is dit ondervangen door een geavanceerde
”counter-rotating” geometrie te gebruiken. Hierdoor blijven deeltjes langer in beeld
en onder deze omstandigheden konden metingen worden verricht over een voldoende
groot bereik om nauwkeurig diffusie te meten. De resultaten bleken goed overeen te
komen met data in de literatuur, die langs andere weg zijn verkregen.

Het tweede deel bevat een nadere analyse van de meetresultaten. In hoofdstuk 4
wordt op verschillende wijzen gekeken naar de beweging van deeltjes in geconcen-
treerde suspensies: de beweging van individuele deeltjes, diffusieco¨efficiënt zoals
bepaald via bovenstaande statistische methode en reologische experimenten, die de
macroscopische relatie tussen krachten en vervormingen weergeven. Zowel diffusie
als reologie zijn het gevolg van de onderliggende microstructuur en moeten daarom
gecorreleerd zijn.

In hoofdstuk 5 wordt getoond hoe de resultaten gebruikt kunnen worden om alle
componenten van de diffusietensor te bepalen. Door uitbreiding van de analyse kan
met onze meettechniek naast de al eerder bepaalde diffusieco¨efficiënten tevens de
component in de snelheidsrichting worden gemeten. De kruisterm bevat de koppeling
tussen beweging in de snelheidsgradient- en snelheidsrichting. De hier beschreven
metingen zijn de eerste experimentele bepalingen van deze diffusieco¨efficiënten.

Hoofdstuk 6 bevat een eenvoudig botsingsmodel. De dynamica van geconcen-
treerde suspensies is zeer ingewikkeld en een volledige oplossing van het probleem
is nagenoeg onmogelijk. Het botsingsmodel is ontwikkeld om te onderzoeken of
op basis van eenvoudige mechanische concepten de hydrodynamische zelf-diffusie
kan worden gemodelleerd. Het model is gebaseerd op enkele eenvoudige aannames.
Deze aannames zijn rechtstreeks gerelateerd aan karakteristiek gedrag dat ook in onze
experimenten wordt gevonden.
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