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ABSTRACT

We propose a model for the nonequilibrium enhancement of colloidal self-diffusion in

an externally imposed shear flow in charged systems. The diffusion enhancement is

calculated in terms of electrostatic, two-body interactions between the particles in

shear flow. In the high-shear rate, low-volume fraction limit in which the model is

valid, we compare these calculations to the experiments of Qiu et al. [PRL 61, 2554

(1988)] and simulations of Chakrabarti et al. [PRE 50, R3326 (1994)] and find good

agreement on scaling and magnitude to within experimental uncertainty of the

electrostatic parameters.
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INTRODUCTION

In addition to their practical importance for and ubiquity in industrial processing,

colloidal suspensions[1,2] serve as a unique model system with which to study the

equilibrium properties of atomic liquids and solids due to their inherently longer lengths

and time scales. In addition, these longer lengths and time scales of colloid systems

offer the opportunity to experimentally probe fundamental issues regarding many-body,

nonequilibrium dynamics in strongly interacting (charged) systems. The long relaxation

times of the system allow it to be driven far from equilibrium through, e.g., the

application of moderate shear rates. Such issues remain among the principal puzzles

of modern statistical mechanics and can thus be explored experimentally through

colloids. For the theorist interested in nonequilibrium statistical physics, the exploration

of colloidal systems promises one of the most direct connections to experiment.

In this paper, we discuss the origin of an intriguing and apparently generic feature

of particulate suspensions driven out of equilibrium by the application of shear flow.

Since its initial observation by Qiu et al.[3] in a charged colloidal suspension, it is now

well known that the effective single-particle diffusion constant grows under shear.

Similar enhancement of self-diffusion under applied shear has been observed in

concentrated noncolloidal (i.e., non-Brownian or high Peclet number) suspensions,

experimentally[4,5] and in simulations.[6] It should be pointed out that this diffusion

enhancement occurs in the gradient and vorticity directions, and is thus unrelated to the

better-understood Taylor dispersion that contributes to the effective diffusion along the

flow direction.

In approaching this problem, we note a general point: two-body interactions in the

suspension that obey time-reversal symmetry cannot be the cause of a mechanism for

diffusion. Because laminar, zero Reynolds number flow is symmetrical under time

reversal, one is forced to look elsewhere to understand nonequilibrium diffusion

enhancement. In uncharged, noncolloidal suspensions, it has been shown numerically

that three-particle hydro-dynamic interactions are chaotic.[7,8] These chaotic interactions

were previously implicated as a source of nonthermal noise in nonequilibrium

suspensions.[9] In addition, finite particle roughness[10] can break the symmetry of low

Reynolds number hydrodynamics effectively, by cutting off lubrication forces at small

interparticle separations.

In charged colloidal systems, there is, however, another source of symmetry break-

ing due to the electrostatic interactions between the colloids[2,11,12] (see Figure 1). The

long-range electrostatic repulsion between colloidal particles has a number of well-

known effects on the equilibrium structure of colloidal suspensions. For example, this

interparticle repulsion drives the colloidal system into an ordered solid phase at volume

Figure 1. Coordinate system for two-particle collision in a shear flow with the right particle as the

origin of the reference frame.
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fractions well below the liquid-to-crystal transition on the hard-sphere phase diagram.

These electrostatic interactions clearly have an impact on the out of equilibrium

dynamics of the system as well. Their importance in the diffusion enhancement

observed by Qiu et al. is demonstrated by the fact that a decrease in the Debye

screening length suppresses the effect. Based on this observation, we build our theory

for diffusion enhancement in the nonequilibrium suspension upon the electrostatic

breaking of time reversal symmetry of particle trajectories within the shear flow.

Fortunately, these electrostatic perturbations to the particle trajectories are more

analytically tractable than the chaotic, many-body hydrodynamics that presumably

generates a similar diffusion enhancement in non-Brownian hard-sphere suspensions.

We suspect, however, that such chaotic effects, which play a role only when three or

more particles pass within a few particle radii, become increasingly important for

randomization of particle trajectories at higher-volume fractions. On the other hand, the

electrostatic effects that we analyze in this paper, presumably dominate the diffusion

enhancement at low-volume fractions.

The remainder of the paper is organized as follows: in the next section, we develop

the fundamental trajectory calculation for two electrostatically interacting colloids

passing each other in the externally imposed, uniform shear flow. We then explore the

consequences of this trajectory calculation for the enhancement of diffusion, which we

report in the following section. We conclude in this section by further discussing these

results and comparing them in quantitative detail to experiment and simulation.

THEORY

Our calculation proceeds as follows: In a collection of particles of radius a at

volume fraction f, we consider the randomization of the trajectory of a particle, which

we refer to as the scattering center, due to its electrostatic interaction with a collection

of identical particles that are carried past it in the shear flow. This is done in two steps.

We first compute the trajectory of a charged colloid as the macroscopic shear flow

(uniform shear rate _g) carries it past the scattering center; from this calculation, we

determine the displacement of the scattering center. Given a spatially random ensemble

of the incoming particles, we compute the second moment of the displacements of the

scattering center due to interactions with the particles flowing past it. The product of

this second moment with the rate of scattering events (� _g) gives the shear

enhancement of the diffusion constant DD � j _gja. We compare the magnitude of this

diffusion enhancement and its dependence upon shear rate (i.e., a) by experiment.

Qualitatively, the trajectory of a charged particle under the combined influence of

macroscopic shear flow and electrostatic interaction with the scattering center can be

described as follows. The shear flow brings a particle toward the scattering center along

a given stream line. While the particle resides within a few screening lengths of the

scattering center, the electrostatic interaction displaces the particle from its stream line.

However, once the particle has been carried by the combination of flow and

electrostatic interaction to a distance of more than a few screening lengths, the particle

resumes its trajectory along a different streamline than the one an which it entered. See

Figure 2 for computed trajectories.

There are two simple, heuristic limits resulting from the dominance of one of two

independent forces controlling the particle trajectories, hydrodynamic drag and the

interparticle, electrostatic interaction. These limits result in qualitatively different
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particle trajectories and a different dependence of diffusion enhancement upon shear

rate. It must be emphasized that the experimentally studied case, which is the focus of

this paper, lies intermediate to these two limits.

In the case of an arbitrarily strong electrostatic interaction, this force completely

controls the motion of a particle in the interaction zone, and we recover a simple linear

dependence of the diffusion enhancement upon shear. A particle enters the interaction

zone along some stream line. Now, the dominant electrostatic repulsion between that

particle and the scattering center drives the particle out of the interaction zone. It then

resumes its straight-line motion along a different stream line. The displacement of the

particle is thus on the order of the interaction zone radius and is independent of the

imposed shear rate. The scattering rate, however, is proportional to the shear rate, so

that the diffusion enhancement scales linearly with shear rate, DD � j _gj in the low-

shear rate regime, where the particle–particle interaction is entirely dominated by the

electrostatics (Figure 2a).

On the other hand, if the electrostatic interaction is weak enough, or,

equivalently, if the shear rate is high enough, a particle will be carried predominantly

by the shear flow through the electrostatic interaction zone surrounding the scattering

center. In this case, the residence time of the particle in the interaction zone is

inversely proportional to the shear rate. In the low Reynolds number limit (which we

Figure 2. Trajectories in the x–y plane (i.e., j0 = p/2) for the collision between two

electrostatically interacting colloids in a shear flow; H = 106 in the upper figure, and H = 1 in the

lower figure; trajectories are plotted for different impact parameters r̂0. The dashed semicircles

denote the volume of the interaction zone surrounding the scattering center.
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always assume), the displacement of the particle from its initial stream line is

proportional to the time integral of the force acting on it. In this case, that time

integral will be proportional to _g�1. Because the rate of scattering events will still be

proportional to _g, we expect that the enhancement of diffusion will plateau at high-

shear rates (Figure 2b).

The cases described above represent only the limiting cases of strong and weak

shear. Not surprisingly, for physical values of the ratio of the two forces, including

those encountered in experiment, the predicted result for shear enhancement

interpolates between these limits. We find for a broad range of shear rates and for

physically relevant electrostatic interaction parameters that the shear enhancement of

diffusion scales is DD � j _gj0:7.

Our calculation cannot be extended to zero _g. We estimate a lower shear-rate

cutoff for our analysis by noting that we assume that particles follow stream-lines

toward and away from the scattering center, except when they are within the interaction

zone surrounding each particle. If the shear rate is so low that particles can exhibit

significant diffusion while moving through the interaction zone, the deterministic

trajectory calculations are no longer valid. The crossover from our model calculations

to quadratic scaling occurs at a critical shear rate _g* � k2 D0, where D0 is the

Brownian diffusion constant. At this crossover shear rate, a particle diffuses a Debye

length in the same time as it is advected that distance by the flow. For the experimental

system in question, _g* ¼ 102 s�1. In addition, we note that the reduction of many-body

interactions into a series of simple two-body interactions can only be justified in the

limit of small particle number density.

The resulting scaling of the shear enhancement of diffusion with shear rate is in

good agreement with nonequilibrium, Brownian-dynamics simulations.[13,14] The

experimental data,[3] however, suggest a power law of unity. To resolve this discre-

pancy, we point out that our calculation is not applicable to the lower shear rate

experimental data. In this lower shear rate regime, we expect that the shear-rate

dependence of DD is stronger than linear,[16] so that the effect of the crossover of the

exponent from greater than one to 0.7 leads to a larger apparent exponent in the data.a

Second, we note that over the single decade of shear-rate data available, it is

problematic to distinguish between our proposed exponent of 0.7 and the linear

dependence on shear rate concluded by Qiu et al. In addition, we will show that by

making reasonable assumptions about the electrostatic interactions present in the

experimental system of Qiu et al., our calculation of the magnitude of the shear

enhancement effect agrees well with the experiment.

In an earlier mode-coupling study, Indrani et al.[15] attribute the diffusion enhance-

ment to the suppression of the effective friction, z, experienced by a concentration

fluctuation. Noting that D�T/z, they calculate the contribution to z from the interaction

of a particle concentration fluctuation with all other thermally generated concentration

fluctuations in the medium. The principal effect of the shear flow is to destroy these

concentration fluctuations and, thereby, decrease the effective friction. We, on the other

hand, propose that the principal effect of the shear flow when considered along with the

electrostatic interparticle interactions is to increase the effective temperature in the

nonequilibrium system.

aWe note that similar arguments were made in Ref. [15].
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The particle trajectories are described by the following differential equation:[17]

dY

dx
¼ Y

x

1 þ x2
þ H

sinj
Y þ 1

Y2
e�Y ð1Þ

where Y = kR is the distance of the incoming particle from the scattering center

measured in Debye lengths k�1, and x = cot � is the polar angle (Figure 1). Eq. 1

accounts for the interplay of the hydrodynamic drag force by the fluid represented by

the first term and electrostatic repulsion between particles represented by second term

on the RHS of Eq. 1. The relative importance of these two forces is measured by the

dimensionless parameter H, which represents the ratio between the electrostatic

interparticle interaction and the hydrodynamic drag. H is defined by

H ¼ 8p�r�0F2
aðkaÞ2

e2kak
z _g

¼ C

_g
ð2Þ

where ere0 is the dielectric constant of the fluid, Fa the apparent surface potential of

the particles, and z the hydrodynamic friction factor. All the details of the elec-

trostatic interaction for a given colloidal system can be subsumed into the parameter

C defined above.

Eq. 1 neglects hydrodynamic interactions between particles, which is acceptable if

particles, do not make close passes. In a dilute suspension of highly charged colloids,

the number of such close passes should be negligible and thus not greatly contribute to

the effective diffusion constant. This view is supported by the original experiments that

showed that the shear enhancement of diffusion disappears with sufficient screening of

the electrostatic interaction.[3]

To determine the trajectory of a scattering particle, we integrate Eq. 1 from initial

conditions such that at large distances from the scattering center (i.e., x!�1), the

incoming particle has an impact parameter r0 and a polar angle j0 measured from the

axis in the yz plane. Due to the central nature of the electrostatic forces, every

trajectory is confined to a plane of constant j. However, because ŷ is the velocity

gradient direction of the imposed shear flow, the rate of incoming particles to the

scattering center will depend on j. We show in Figure 2 two sets of numerically

integrated trajectories. The first set represents the electrostatically dominated regime

(high H), and the second set shows the shear flow dominated regime (low H).

We determine the total displacement of the incoming particle normal to the stream

lines by finding the change in the radial distance Dr̂ = k(rjx!1�r0) of the particle’s

trajectory to the x̂ axis, comparing the asymptotic out-state, where x!1 to the initial

impact parameter. By symmetry, each particle (the incoming particle and the scattering

center) moves half of the distance Dr̂ in the laboratory frame.

For collisions between two interacting colloids with initial conditions in the

x–y plane (j0 = p/2, see Figure 2 for trajectories), the displacement Dr̂ is plotted as a

function of the impact parameter r̂0 = kr0 and the dimensionless interaction parameter

H in Figure 3. Because the motion is restricted to the x–y plane, Dr̂ is equivalent to

k Dy. The upper graph of Figure 3 clearly illustrates that the significant particle

interactions take place only in a well-defined range of impact parameters, the scattering

zone. If particle pairs start their collision inside this interaction zone, they under-

go significant displacements; otherwise, they move along virtually undisturbed. The

scattering zone expands with increasing values of H, as might be expected. In the lower
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graph of Figure 3, one can see what happens if r̂0 is kept constant while the

electrostatic interaction becomes stronger with respect to flow (increasing H). The

displacements are increasing as well, in a nontrivial way. For every impact parameter,

the displacements initially grow rapidly with H and then level off for flow conditions

dominated by electrostatics (high H).

Presented in Figures 2 and 3 are the particle displacements for one initial

orientation of the colliding pair (j0=p/2). In order to calculate diffusion coeffcients, all

possible orientations need to be considered.

The effective enhancement of the diffusion constant in the velocity gradient (y) and

vorticity (z) directions can be calculated from the second moment of the particle

displacements in the appropriate directions:

DDyy ¼ 1

2
k�2

Z
PðsÞ 1

2
Dr̂ðsÞ sinj0

� �2

d2s ð3Þ

Figure 3. Dimensionless displacements k Dy for colliding particle pairs with trajectories in the

x–y plane (�0=�/2); the upper graph presents k Dy as a function of dimensionless impact

parameter kr0, while the lower graph illustrates the dependence of k Dy on the interaction

parameter H.
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DDzz ¼ 1

2
k�2

Z
PðsÞ 1

2
Dr̂ðsÞ cosj0

� �2

d2s ð4Þ

where P(s) ds is the probability per unit time of a collision to occur with impact

parameter s = (r̂0, j0), where r̂0 = kr0 is made dimensionless. The terms in parentheses

represent the displacements of a given particle in the respective directions. Assuming a

random distribution of particles, P(s) is given by the particle flux through the area r0

dr0 dj0:

PðsÞd2s ¼ 3f

4pðkaÞ3
_g sinj0 r̂2

0 dr̂0 dj0 ð5Þ

The integration domain in Eqs. 3 and 4 only accounts for particles flowing in from the

left (y > 0). The diffusion constants are doubled to account for the contribution of the

particle flux from the right (y < 0). As expected, the shear rate _g affects shear-enhanced

diffusion in two distinct ways: through the particle flux (� _g) and the step size, which

depends on H = C/ _g in a complicated way that we explore below.

RESULTS AND DISCUSSION

To explore the shear rate dependence, it is convenient to express the diffusion

constants in the following form, combining Eqs. 2, 3, and 4:

DDaa ¼ 3f

4pðakÞ3k2

C

H
IaðHÞ ð6Þ

where Ia is a dimensionless integral (a = y, z). The entire shear rate dependence is now

contained in 1/H
Ia(H), where H�1/ _g. Figure 4 are shown in the results of our

calculations in this dimensionless form: 1/H 
 Ia(H) � DDaa vs. 1/H � _g.

For small values of H (large _g or low interaction), the H dependence of Ia(H) is

linear, as can be seen by simple perturbation theory in H. DDaa at these large shear

rates becomes independent of H. For large H, however, the dependence on H weakens,

and the curves are described well by Ia(H) � H0.3, so that the diffusion enhancement,

which scales as 1/H
Ia(H), takes the form: DDaa � 1/H 
 Ia(H) � H�0.7 � _g0:7. At

small shear rates, the diffusion enhancement is anisotropic, DDyy / DDzz � 1.7, which is

a geometrical effect related to the shear flow.

That the power law scaling holds over a wide range of shear rates is one of the

central results of this paper. The power law of 0.7 is not inconsistent with the

experimental data of Qiu et al., because it is diffcult to distinguish from an exponent of

unity over the limited range of the experimental shear rates where we expect our model

to be valid (>100 s�1). In addition, the computed exponent agrees well with previous

simulations of the system.[14] The scaling of the diffusivity with shear rate is distinctly

different from that observed in noncolloidal suspensions, where shear-induced diffusion

grows linearly with _g.

In addition to the scaling, the calculations make testable predictions about the

magnitude of DD. To test this point, we need to obtain a value for C that depends on

the surface potential of the colloids Fa, the Debye screening length k�1, the particle
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radius a, and the effective particle mobility z�1. We determined the sphere mobility

empirically from single-particle diffusion in the uncharged system, and, thus, only

need the electrostatic parameters to determine C and calculate the diffusivity en-

hancement under shear. The model does not contain adjustable parameters beyond

these physical quantities.

Unfortunately, Qiu et al. do not report a value for the surface potential of the

charged colloids, so that C cannot be used directly as an input parameter for quantita-

tive comparison with our model. The next best thing is to take the experimentally

measured diffusion enhancement at a typical shear rate, e.g., DDzz=1.4
10�12 m2/s at

500 s�1, and calculate the electrostatic model parameters k and Fa that lead to this

result, while keeping H in the regime where DD � _g0:7. For Fa � 200 mV and a ratio

of particle radius to Debye length ka�0.4, our theory matches the diffusion for H=104,

while ka was estimated to vary between 0.73 (weak interaction) and 0.24 (strong

interaction) in the experiments.[3] Thus, the theory reproduces the experimentally

measured diffusion enhancement and the power law dependence of the latter upon

shear rate (seen in simulations) simultaneously for the only available data set.

Considering the strong dependence of DD on the electrostatic parameters (i.e.,

DD�k�4.1 e0.6ka) and the imprecision with which these parameters were measured, the

theory needs a more stringent experimental test. To this end, diffusion measurements

under shear need to be performed on well-characterized systems. The systematic

variation of the electrostatic parameters in a low-volume fraction suspension should

prove to be an unambiguous experimental test of the theory presented here.
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Figure 4. Scaling of diffusion with shear rate represented by the equivalent plot of I(H)/H vs. 1/H.
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