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The full diffusion tensor of shear-induced self-diffusion has been measured experimentally for the
first time. In addition to the well-known components in the velocity gradiBgt,, and vorticity
direction,D,,, the coefficientD,, andD,, have been determined for concentrated suspensions of
noncolloidal hard spheres as a function of particle volume fraction. Owing to the shear-induced
nature of the phenomenon, these four coefficients are the only nonzero elements of the diffusion
tensor. The newly determined diffusion quantities have been obtained by extending our correlation
based techniqui). Fluid Mech.375 297 (1998; Phys. Rev. B63, 021403(2001) | with a method

to subtract convective displacements due to the shear flow. The diffusion in the velocity direction,
D,x, is almost an order of magnitude larger than the other components and the only nonzero
off-diagonal componenD,,, is negative and small compared to the diagonal components of the
diffusion tensor. In principle the applied technique is also feasible for measuring other anisotropic
diffusion mechanisms, e.g., Brownian diffusion in steady shear flow2002 American Institute of
Physics. [DOI: 10.1063/1.1478770

I. INTRODUCTION used so faf:>°In this paper we concentrate on the stochastic
motion of individual particles. We will studyAr(t)Ar(t))

Shear-induced self-diffusion is an important transportstarting from a Langevin equation, including a stochastic

mechanism in noncolloidal suspensions under shear. The noerce F4(t) with colored noise properties, acting on the par-

ture of the phenomenon is different from the more familiarticle due to the hydrodynamic interactions with all other par-

Brownian diffusion in colloidal suspensions, which is causedicles. The mean square displacements are determined by the

by thermal fluctuations, and turbulent diffusion, driven by ensemble averaged autocorrelation function of this stochastic

inertia. Shear-induced diffusion occurs even in case of higlfiorce G(t—t") =(F¢(t)Fs(t')). We will show that after suf-

Peclet and low Reynolds numbers and is, in the case of haréicient long time the behavior will be diffusive, i.e., the self-

spheres, the result of excluded volume effects only: neighédiffusion tensor

boring particles are displaced from their initial streamline

when passing each other. In a concentrated suspension these 1 d 1 (=

interactions lead to net displacements after completion of the ~ 2 tl':r:o a(Ar(t)Ar(t)}— ?fo G(s) ds @

interactions, as opposed to an isolated two-particle collision

in Stokes flow, where the trajectories are purely symmetricalis constant. Heré is the hydrodynamic friction factor of the

It has been shown by a number of research@rhat, in a  particles.

certain range of times, the displacemeftsscale diffusively Because the phenomenon is purely induced by the shear

with time: (ArAr)e«2 DAt, where(-) denotes an ensemble flow, dimensional analysis and symmetry considerations

average. The self-diffusion process can give rise to macroshow that in simple shear flow the self-diffusion tensor

scopic particle migration in case of inhomogeneities in conthas—by analogy with the stress tensor—the following

centration and/or flow field, the so-called gradientform:%!?

diffusion®’ which is of practical importance when handling R R

suspensions under high ddet and low Reynolds number Dyx Dyxy O

conditions. In general, particles tend to accumulate in re- 2R _ 2] A A

gions of low shear rate, i.e., the center of a Poiseuille flow D=ya’D(¢)=7a%) Dy Dy 0 1. @

geometry or at the outer cylinder wall of a Couette shear cell. 0 0

Recently it was shown experimentdlignd also numeri- . . . .
cal studie$® indicate that the stochastic motion of the par- The Cartesian coordinate system is chosen according to the

ticles is not diffusive on all time scales. Hence this proces§onvent|on thak is along the velocityy along the velocity

cannot be described by the convection diffusion equatiorgrad'em’ _andz a_long the vort|<_:|ty direction. Th_e d|ffu5|_on
tensorD is an isotropic function of the velocity gradient

] o o tensorL = 'yexey. Hence the principle of frame indifferende
dpresent address: Department of Chemical Engineering, University of Cali-

DZZ

fornia, Santa Barbara, CA 93106-5080. prescribes th_e above-given form b{¢); D, Qnd Dy are
DElectronic mail: h.t.m.vandenEnde@tn.utwente.nl the only off-diagonal components that could differ from zero.
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Moreover from Eq.(1) and the symmetry oG(t—t') one [7) OO0 O 0 O
A A~ | ( )( )
observes thab is symmetric:D,,=D,,. The scaling can be "o O O 0 C o000 O

understood by realizing that the reciprocal of the shear rate: O C%O O‘O A’t @ @ O.OOO

v~ ! and the particle radiua are the only relevant time and %O OOO @) o) Q O 00
length scale of a system of noncolloidal hard sphefess 'y 1O 6%) OOé) @) %% OO
L& 00 Ce Shuel Yol

the dimensionless diffusion tensor which components depend

only on the particle volume fractiogh.
Following the same arguments the autocorrelation tensor ®_®
G(t—t') will scale with (@ay?)?, where( is the friction fac- f‘ _:::;@
tor of a particle in the fluid, and will have the same compo- @ i
nents different from zero &B. RN Ax
To date only experimental results have been reported on @@:\‘%{‘;\‘t‘ : ™
Dy, and D,,.>~® Since these experiments have shown that \%S;)

shear-induced diffusion is anisotropicD,/D,,~1.5),
kn0W|edge of the full Self'.d'ffusmn tensor.'S hlghly desirable FIG. 1. Example of the correlation procedure; upper panel: two subsequent
for understanding the microhydrodynamics of concentrateghmages of the suspension under shear; lower left: network of gstd-and
suspensions. In this paper we present an approach to deteress-correlatiori-—-) vectors; lower right: same set of vectors now pointing

. . 2 2 . all from the same origin.
mine the remaining componeridg, andD,, . The technique
is an extension of our previous work on measunﬁlg/ and
D,,.% In Sec. Il the analysis of the full diffusion tensor will due to gradient diffusion. The images are stored real-time in
be introduced from the experimental point of view. Thesequences of 200 images through a frame graliidetrox
mathematical framework is then provided in Sec. Ill. ResultsPulsaj which is controlled by dedicated image grabbing
are presented in Sec. IV and Sec. V closes the paper with goftware(Hispa. By repeating the grabbing procedure large
discussion of the results and conclusions. image sets are obtained.

Il. EXPERIMENT B. Method

A. Materials The measuring technique is based on spatial correlation
' _ _ _ ~ of tracer positions in a concentrated suspension under shear;
For the experiments we used a well-defined size fractionis method we developed originally for measurgy and

2Ieﬁ(g&nlzthy:nngfﬂﬁgyﬁiz'\:y A)ro%arélg(ljez Wlléhl G::iI:rTs-'t 622.4'5 Following this approach, first all tracer positions are
K ucte, » produ y I~ "Y' determined in the sequence of video images using commer-

e e T G ageanayss sovaspinas, Wada Operets
P 9 ' After obtaining the tracer positions, the actual correlation

demineralized water an.d zinc-ll-chloride, which ha§ beep rocedure is applied. The successive steps of this procedure
measured to be Newtonian at relevant shear rates with a wg-

cosity of 3.4 Pas (23°CThe fluid composition was cho- re llustrated in Fig. 1.

. . T The upper half of Fig. 1 displays two subsequent images
sen such that it matched the density and refractive index of . :
the particles as well as possible. A small fractigypically in which a number of tracer particles appear as detected by

: : the image analysis software. The macroscopic flow field is
0,
0.3% of the suspension voluinef the particles was colored drawn on the left. The tracer positions in the first frame are

with fabric dye to function as tracer particles. The density Ofcorrelated to all tracers in the second frame. For this particu-

the dyed particles was not notably affected: even after sevl(—ir example, the result is a set ofk&=20 correlation vec-

eral weeks no separation of qud and undyed particles couk rs, which are shown in the lower left-hand image. The
gzvgt)asler\;?t?clg vtglirﬁﬁfaegmgs(' 2§3m_p4|1250 /gve'\rﬂeatzﬁgaﬁdeo%tshed lines denote cross-correlation vectors between differ-
P 0 0): 9 NCent particles and the solid vectors represent autocorrelation

ggfgcgg)tﬁ)égrggizsfvbﬁepiretglriseiggosnuisspgﬁg&%&gd ®Wectors. Only the latter contain information about particle

) . . motion. However, in the experimental situation the particle
The motion of the colored tracer particles in a counter- P P

rotating large radius. narrow gap Couette aeom ails identity isa priori unknown when comparing pictures taken
in Bre(?dvel%et al®) is’monitore% S means ogf a diei[mtaglt cch at relatively long time intervals, so that it is impossible to

' X y . 9 distinguish between cross- and autocorrelation vectors on the
camera. The counter-rotating feature is required to kee

tracer particles within the observation window sufficientl asis of the image sequence. However, for our correlation
P . : e Ytechnique such knowledge is not required. Because of the
long to capture long-time shear-induced self-diffusion for di-

) S i i different nature of cross- and autocorrelation vectors, statis-
mensionless timesy At>1. With this geometry we were 5| analysis of a large data set enables us to discriminate
able to observe an autocorrelation peak evemfdit=2.8,  petween the two types and extract information about particle
compared toy At=0.5 in the non-counter-rotating setfip. motion. In the lower right quadrant of Fig. 1 the vectors are
The large radiug120 mm and narrow gag4 mm) design  collected in a graph where they all point from the same ori-
minimizes the influences of curvature and prevents migratiomin. Due to the shear flow the autocorrelation vectors all
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FIG. 2. Histogram of correlation vectorak,Ay) for a set of 8000 images

at 'yAt=1.10 and¢=0.35; the units along the horizontal axes are pixels
andH is given in arbitrary(non-normalizegl units.

FIG. 3. Histogram of correlation vectorak,Ay) for the data set of Fig. 2;

inset shows the contour lines of the central peak.

have a convective component to the right in addition to thdocity over the observation windoyseevy,,, in Fig. 1). Un-
stochastic component. Therefore they are all located in théke the example of Fig. 1 where the shear flow gave a net
area just to the right of the origin. The cross-correlations ordisplacement to the right, Fig. 2 contains experimental data
the other hand are scattered all over the graph. taken in our counter-rotating geometry and thus the autocor-
By repeating the correlation procedure for several thouselation peak is centered around the origin: the average
sand image combinations, a histogram like Fig. 2 can belisplacement of all particles equals zero. However, the con-
built of the correlation vectorsAx,Ay). The insets depict vective flow still varies as a function of coordinate and
projections of the histogram along tihex andAy axes. The because of this the central peak is much wider inxltlean
histogram in Fig. 2 represents the experimental probability in they direction.
to detect a correlation vectoAk,Ay), while observing the The convective motion can be eliminated in a fairly
tracer particles along the vorticity) direction: simple way: since the macroscopic simple shear flow is sta-
tionary and the positions of tracer particles are known before
H(AX,AY) =F(AX,AY)[Pe(AX,Ay) +C]. ©) perfor)r/ning the é)orrelation step, thg convective displacement
It contains two separate contributions: a central peakyx =(1y(y,+y)+vo)Ate, can be subtracted. Heyg and
Pe(Ax,Ay) that consists of the autocorrelation vectors and & =y + Ay denote they component of the tracer position in,
backgroundC due to the cross-correlations. These are botftespectively, the first and second image of the correlated im-
multiplied by the detection efficienclf (Ax,Ay) for a cer-  age pair.
tain correlation vector£x,Ay) to be observedt is purely Using the transformatiodx— Ax,— Ax where the latter
determined by the shape of the observation window and cafx now represents only the stochastic part of the displace-
be calculated as the convolution of the window with ment, Fig. 2 changes to Fig. 3. Note from the scales along
itself.>*? Essentially,F accounts for the fact that it is less the axes that the central autocorrelation peak in Fig. 3 is now
likely to find a large displacement, compared to a small onemych narrower in the direction; P(AX,Ay) is no longer
due to the finite size of the observation window. broadened by variations in the convective flow over the ob-

The cross-correlation backgrouddis directly related to servation window. The efficiency functid(Ax,Ay) differs
the distribution of tracer particles over the observation Wi”'from F in Fig. 2 since the image window is slightly distorted

dow. At high volume fraction of particles one expects som . . ~ .
structure in the pair distribution functiay(r) and thus in the eg?;et:tllayiﬁgke?hgaE:;cxrzzzr;}eas %?rlhsetlnc)s:e(r:\?:t:il:)lr?tsvcijn-

distribution of tracer particles. However no structure could ow after the above coordinate transformation has been per-
be observed in this distribution, not even when one correlateg ) . P
ormed. The cross-correlation ter@is not affected by the

images with themselveg\¢=0). This is due to the fact that C : ) L
- e . transformation: it was independent afX,Ay) in the origi-
a projection of the distributiofin this case along the vortic- o .
nal situation and remains constant.

ity direction is observed. In this projection possible struc- . . .

tL)J/I‘eS in the distribution will be avzra]ged ouf Therefore the The 'contour plot of .the. pe"_"k n the_ Inset Ot Fig. 3 now

backgroundC is assumed to be constant at all values\of ~'€Veals important qualitative information aboll,,: the

and further analysis can be concentrated on the autocorrelgain axes of the peak are tilted which indicates tbaf,

tion peak which contains information about the motion of #0. Taking into account that the shear flow in our experi-

tracer particles. ment was applied in the negativedirection (see Fig. 4,
The histogram clarifies why the measuremenbgf and it can be concluded thaﬁ)xy<0. Physically this means that

D,y is more complicated than measurement of the othea particle undergoing a stochastic displacement in the

components: the stochastic displacements in the velocity di+x (—Xx) direction most likely simultaneously moves in the

rection (x) are masked by variations in the macroscopic ve-—y (+Yy) direction.
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<Fs(t)>:01
(Fs(DF4(t"))=G(t—t").

The tensoiG(s) is assumed to be symmetrié(s)=G'(s).
Moreover we assume that for large time differenftest’|
the autocorrelation of the force vanishes faster than with
[t—t’| 73, i.e., lims_..(s’G(s))=0. The solution of Eq(4)

FIG. 4. Top view of three experimental histograms of correlation vedars can be found it

as a function of the averaggposition during the time intervay,,,.; data set
is the same as for Fig. 2; from left to right the strain is, respectivelyt
=0.14, 0.55, and 1.10.

©)

r(t):r0+(V0+L . ro)t+ %(L 'Vo)tz

1t , , ,
+Zfo<|+(t—t )L)-Fo(t)dt, ()

The shear flow parametefsandy,, needed for this con- wherel is the unit ten_sor ant, the position of the particle at
t=0. The average displacements are now equal to

vective motion subtraction are determined from the data set
instead of using an external estimate based on the rotational o
speed of the Couette geometry. After calculation of the cor-  (X—Xg)= ( Yot —
relation vectors, a histogram can be built plotting the experi- Y
mental probability of a displacemenix at differenty posi- _ _ @)
tions, using the average positidiiy,+Yy) for they position (y=yo)=(z=20=0,

during the correlation timat. Examples of such a histogram where y= yAt. Using the transformation described in Sec.
are presented in Fig. 4. The top view of the histogram ig| B:
shown and the heighprobability) is coded in gray scales,
lighter scales indicating higher probabilities. The autocorre-
lation vectors are located in the central p&hght band in Ay=y—vyo,
this figure as well. The center of the band represents the

average displacement and thereby the velocity profile in the Az=z-2z,,
observation window. By performing a linear fit to these

graphs, the parametei;sandvo were obtained.

Y

AXx=X—Xo= (Y +Y0)/2,

one obtains for the mean square displacements:

In case of observation along the vorticity axég., Fig. (AXAX) A~ (0) oy D)
1) information about displacements in thaelirection is lost 222 YR () = Qux (7,
and a two-dimensional distribution in they plane is mea-
sured as in Fig. 3. In order to determifig,, the particles + QW1 — 17 QW+ 1Y QR(9),
should be observed along the gradient direction and the dis- (AxAy)
tribution in thex—y plane can be analyzed, as was done in a = ng(O)( y)— Q&l)( ),
previous study. 2a® g g
®
AyA
) -,
11l. LANGEVIN EQUATION
Althou i . Ao (1)
gh the experimental method to remove the con 5= 7Q (V) — Q7 ().
vective flow by using the averageposition of the tracers is 2a
intuitive, a closer look at the theoretical implications of this fere the following definition has been used:
coordinate transformation is required to justify the approach.
From experimental histograms like Fig. 3 values for My n_ |7 A
(AXAX), (AxAy), and(AyAy) can be obtained. These can Qi (n= fo a"Gy(@)dg ©

be compared directly to theoretical predictions. For a particle . . e o
subjected to simple shear flow the following force balance oWith Gij(yt) =G;;(t)/(ay{)*. In the limit for y— o the co-

Langevin equation can be formulated: efficientsQi(j”)(y) become constant, due to the finite autocor-
relation time of the stochastic force, while for=0 they are
L(Vo+L-r(t)—v(t))+F4(t)=0, (4)  related to the diffusion coefficients by
Dij = Qi (=). (10

where( is the hydrodynamic friction factor of the particles,
L= 'yexey is the velocity gradient tensavy=v €, the flow  From Eq.(8) one observes that, for sufficiently large values
velocity aty=0, andF4(t) the stochastic force acting on the of y, (AxAy), (AyAy), and(AzAz) indeed grow linearly
particle due to hydrodynamic interactions with all other par-with vy, showing an offset fory=0, but the behavior of
ticles in the fluid. This force is characterized by the follow- (AxAx) is less obvious. HoweveQ{%(«) can be deter-
ing properties: mined from
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1.2 T T T T 4
@ <Ax*>/2? -C —> T

d (AxAXx)
im—
y—=d7  2a?

1
= Q) — 57Qf(=) N

A <A_y2>/a2 13
+ 3 72QR(), (11) 08 [ «— [0 <AZ>/d
whereQ{9)(=) is the slope of AyAy)/(2a?) plotted against 06 | O <AxAy>/a* 2
the strainy for y—c andQ{})(=) is determined by extrapo-
lating the linear part of this curve towarg=0. 0.4
For a fully diffusive processi.e., on all time scalgshe | 1
autocorrelation function is given byG(s)=H &(s) where 02y e A @ -t g A
&(s) is the Dirac delta function antl a symmetric tensor 0.0 - 2. . . . . 0
whose coefficients are constant. In that c&® =0 for 00 05 10 15 20 25 30
n>0, while Q(®=D, independent of, so Eq.(8) reduces to yAt
the mean square displacements of particles diffusing in a _
simple shear flow? FIG. 5. Evolution of the averages of E@) with dimensionless timgf At
for a suspension witlp=0.45. The lines represent the linear fits faAt
IV. RESULTS f>1<;ACj>(1/1212) (y AD2((Ay?) +2 (Ay?),); note the different scale used
or X%).

For a quantitative analysis of the diffusion coefficients
we check the time dependence of H§). The quantities

(Ax?), (Ay?), and(AxAy) can be determined directly by of the stochastic hydrodynamic force is of the orderof-.

calculating For yAt<1 the averages scale nonlinearly with time; the
motion of the particles is nondiffusive as was expected from

Eq. (8). The measuredArAr) dependence on At in this

. . . . regime can be related to the velocity autocorrelation func-
from the experimentally obtained autocorrelation p€akn tiogr]r y

Fig. 3. In this procedure we have to take into account that the

experimental distribution contains an unknown constant 1 1 d?

cross-correlation contributiol© and a known geometrical <Ui(0)vj(t)>:EGij(t):§E<AriArj>l (12)
prefactorF [Eq. (3)]. Therefore the histogram must be di- . o

vided by the efficiency functiof before the calculation is Where the index paitij} can be{xy;, {yy}, or {zZ. For
done, even if the variations of this function are very small in{Ux(0)vx(t)) the situation is more complicated due to the

the neighborhood of the autocorrelation peak, as can be se§RNVective part of the velocity in this direction. o
in Fig. 3. In Fig. 6 the coefficients of shear-induced self-diffusion

as obtained in this study are combined with the results of our

By measuring{Ax?), (Ay?), and (AxAy) for various : Y _ Sl
. . . . e previous worR to provide information on the full diffusion
values of the dimensionless time= y At the diffusive scal- . . .
tensor as a function of particle volume fraction. As was al-

g .c:.;m be checked. Here_ it is important to notice that, forready noticed qualitatively in Fig. 3, the diffusion in the ve-
sufficiently large values ofy At, Eq. (8) reveals three con-

o 5 oo ; locity direction (k) is an order of magnitude larger than in
tributions to(Ax?): one diffusive term that grows linearly

o . ) . 3 the other directions, while the off-diagonal componég; is
with time and two terms that grow with(At)”and (y At)”, negative and of the same magnitude as the compoiepts
respectively. This is caused by diffusion in thedirection, 9 9 poitEyy

(AriArJ—):J’ f(AriArj) P.(Ax,Ay)dAx dAy

followed by convection along a different streamline in the andD,.
direction.
Figure 5 shows the averages of Ef) as a function of 0.20 ' . . _ 08
y At for a particle volume fraction of 0.45. The averages are ’ ° '
made dimensionless with the particle radius squaa@d, T I/J'
Note that two scales have been used in order to capture the 0.15 ¢ 1 0.6
information in a single graph. To obtain the diffusion coeffi- e —> T X
cientD,, from the slope of the curvéAx?)/a®— C has been 010} 2“ ,_K/"i " |oa
plotteq against yAt, where C is defined by: C <_|:_o_ DZ —9\0__0
= 1 (Y AD)?((Ay?) +2(Ay?)g)/a®. (Ay?), is the extrapo- 005 L-o-bp, A/ 02
lation of the linear part of the((\y?),y At) curve toward 27/40—0/0
yAt=0. 0 . < . . 1o
The evolution of the mean square displacements is for 010 020 & 030 040 050

1< y At<3 well-described by linear fits, so the process can

indeed be described as diffusive. The.d'ﬁu$|0n CoeffICIentSZIG. 6. Dimensionless coefficients of shear-induced self—diffuﬁ)qnas a
are calculated as half the slope of the fitted lines. From thesfnction of particle volume fractior; note that a different scale has been
observations one may conclude that the autocorrelation timesed forD,.
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V. DISCUSSION AND CONCLUSION and Phan and Leightdrwhich were done at much larger

In contrast to the earlier measur&, and D, both strains'yAt> 10. To settle the discussion on this point it
D, andD,, do not significantly vary with volume fraction should be worthwhile to extend the measurements to larger
over the available data range. These are, to our best knowdirains. At the moment this is not possible due to limitations
edge, the first experimental data on the full diffusion tensori" the experimental method of which the nonperfect optical
Recently, however, these quantities have been determined #§NSity matching is the most important; the particles are
numerical calculations using the Stokesian dynamic$!ightly inhomogeneous and so matching can not be im-
method"® In this study it was also found tha,, is negative. proved. _ _

Moreover, the authors give a physical explanation for the 10 describe our data we used a Langevin approach to
negativeD,, value, based on the two particle pair distribu- evqluate the problem of the nondiffusive short time scales.
tion function at high Pelet numbers where hydrodynamics ThiS approach has shown to be useful, however other ap-
dominates the process. In a second study from this §roup Proaches are possible. Sierou and Bfestprt with a modi-
was found that at low volume fractions the value By, is fied master equation for the displacement probability func-
significantly larger than those d,, or D,,. Their results tion resulting in time dependent diffusion coefficients. Both
show however a decrease BX,, with increasing volume approaches give the same description of the diffusive behav-
fraction. ThatD, is significantly larger thad,, or D,,isin  ior for large strains;y At>1, resulting in the same expres-
keeping with a theoretical study of Acrivet all® They ar- sions for the long time diffusion coefficients, but for
gued that at low volume fractior3,, andD,, should grow  small strains,y At<1, the nondiffusive behavior is treated
with ¢? but they predicted thdd,, grows with¢ In ¢ 1 due different.

to a divergence ifAx?) in an isolated two particle collision In conclusion, for time scalesy At>1 the average

for ¢—0. This d?v.ergence i; rendergd finite due to the faCtsquared displacementarAr) scale witha?y At so the pro-
that the slow collisions, causing the divergence, are cutoff by.ags s indeed diffusive. The stochastic part of the particle
occaslonal collisions with oth_er partlcl_es. This leads to theyotion is anisotropic and concentration dependent; and
nondlvergeny’) depenglence, given prewou_sly_. _Hence for low D,, strongly increase with volume fractiap, while D, and
volume fractionsD,, is _expected to be significantly larger D, show hardly any$ dependence,, is almost one order
than Dy, and D,,. Their values, however, are lower than ot magnitude larger than the other component®aindD,,
ours; e.g., a factor 4 a=0.2. is negative. For shorter time scales the stochastic part of the

For ccl)gnparis.on the numerical results mentionedy icle motion can be separated from the convective motion,
previously''® are given in Fig. 7 together with the available t00. On these time scales the measuf@dAr) provides

experimental results from us and other researchieral- information about the velocity autocorrelation function,
though the scattering is large, the experimental results are inich will be subject of further research.

reasonable agreement with each other. The numerical results,

however, are systematically smaller than the experimental

results, typically a factor 2, but fdd,, it is about a factor 6.
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