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Measurement of the full shear-induced self-diffusion tensor
of noncolloidal suspensions

V. Breedveld,a) D. van den Ende,b) M. Bosscher, R. J. J. Jongschaap, and J. Mellema
Rheology Group, Twente Institute of Mechanics, J.M.Burgerscentrum, Department of Applied
Physics, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands

~Received 3 January 2002; accepted 22 March 2002!

The full diffusion tensor of shear-induced self-diffusion has been measured experimentally for the
first time. In addition to the well-known components in the velocity gradient,Dyy , and vorticity
direction,Dzz, the coefficientsDxx andDxy have been determined for concentrated suspensions of
noncolloidal hard spheres as a function of particle volume fraction. Owing to the shear-induced
nature of the phenomenon, these four coefficients are the only nonzero elements of the diffusion
tensor. The newly determined diffusion quantities have been obtained by extending our correlation
based technique@J. Fluid Mech.375, 297 ~1998!; Phys. Rev. E63, 021403~2001!# with a method
to subtract convective displacements due to the shear flow. The diffusion in the velocity direction,
Dxx , is almost an order of magnitude larger than the other components and the only nonzero
off-diagonal component,Dxy , is negative and small compared to the diagonal components of the
diffusion tensor. In principle the applied technique is also feasible for measuring other anisotropic
diffusion mechanisms, e.g., Brownian diffusion in steady shear flow. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1478770#
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I. INTRODUCTION

Shear-induced self-diffusion is an important transp
mechanism in noncolloidal suspensions under shear. The
ture of the phenomenon is different from the more famil
Brownian diffusion in colloidal suspensions, which is caus
by thermal fluctuations, and turbulent diffusion, driven
inertia. Shear-induced diffusion occurs even in case of h
Péclet and low Reynolds numbers and is, in the case of h
spheres, the result of excluded volume effects only: nei
boring particles are displaced from their initial streamli
when passing each other. In a concentrated suspension
interactions lead to net displacements after completion of
interactions, as opposed to an isolated two-particle collis
in Stokes flow, where the trajectories are purely symmetri
It has been shown by a number of researchers1–5 that, in a
certain range of times, the displacementsDr scale diffusively
with time: ^DrDr &}2 DDt, where^•& denotes an ensembl
average. The self-diffusion process can give rise to ma
scopic particle migration in case of inhomogeneities in c
centration and/or flow field, the so-called gradie
diffusion,6,7 which is of practical importance when handlin
suspensions under high Pe´clet and low Reynolds numbe
conditions. In general, particles tend to accumulate in
gions of low shear rate, i.e., the center of a Poiseuille fl
geometry or at the outer cylinder wall of a Couette shear c

Recently it was shown experimentally8 and also numeri-
cal studies9,10 indicate that the stochastic motion of the pa
ticles is not diffusive on all time scales. Hence this proc
cannot be described by the convection diffusion equa
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used so far.4,5,9 In this paper we concentrate on the stochas
motion of individual particles. We will studŷDr (t)Dr (t)&
starting from a Langevin equation, including a stochas
force Fs(t) with colored noise properties, acting on the pa
ticle due to the hydrodynamic interactions with all other p
ticles. The mean square displacements are determined b
ensemble averaged autocorrelation function of this stocha
force G(t2t8)5^Fs(t)Fs(t8)&. We will show that after suf-
ficient long time the behavior will be diffusive, i.e., the se
diffusion tensor

D5
1

2
lim
t→`

d

dt
^Dr ~ t !Dr ~ t !&5

1

z2E0

`

G~s! ds ~1!

is constant. Herez is the hydrodynamic friction factor of the
particles.

Because the phenomenon is purely induced by the s
flow, dimensional analysis and symmetry consideratio
show that in simple shear flow the self-diffusion tens
has—by analogy with the stress tensor—the followi
form:11,12

D[ġa2D̂~f!5ġa2H D̂xx D̂xy 0

D̂yx D̂yy 0

0 0 D̂zz

J . ~2!

The Cartesian coordinate system is chosen according to
convention thatx is along the velocity,y along the velocity
gradient, andz along the vorticity direction. The diffusion
tensor D is an isotropic function of the velocity gradien
tensorL5ġexey . Hence the principle of frame indifference13

prescribes the above-given form ofD(f); D̂xy and D̂yx are
the only off-diagonal components that could differ from ze

li-
9 © 2002 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Moreover from Eq.~1! and the symmetry ofG(t2t8) one
observes thatD is symmetric:D̂xy5D̂yx . The scaling can be
understood by realizing that the reciprocal of the shear
ġ21 and the particle radiusa are the only relevant time an
length scale of a system of noncolloidal hard spheres.D̂ is
the dimensionless diffusion tensor which components dep
only on the particle volume fractionf.

Following the same arguments the autocorrelation ten
G(t2t8) will scale with (aġz)2, wherez is the friction fac-
tor of a particle in the fluid, and will have the same comp
nents different from zero asD.

To date only experimental results have been reported
D̂yy and D̂zz.1–5 Since these experiments have shown t
shear-induced diffusion is anisotropic (D̂yy /D̂zz'1.5),
knowledge of the full self-diffusion tensor is highly desirab
for understanding the microhydrodynamics of concentra
suspensions. In this paper we present an approach to d
mine the remaining componentsD̂xx andD̂xy . The technique
is an extension of our previous work on measuringD̂yy and
D̂zz.5 In Sec. II the analysis of the full diffusion tensor wi
be introduced from the experimental point of view. T
mathematical framework is then provided in Sec. III. Resu
are presented in Sec. IV and Sec. V closes the paper w
discussion of the results and conclusions.

II. EXPERIMENT

A. Materials

For the experiments we used a well-defined size frac
of poly/methyl methacrylate~PMMA! particles with diam-
eter 90615 mm ~Lucite, class 4F, produced by ICI, densi
r51.172 g/ml, refractive indexnD51.491 at 25 °C!. The
suspending fluid consisted of a mixture of Triton X-10
demineralized water and zinc-II-chloride, which has be
measured to be Newtonian at relevant shear rates with a
cosity of 3.4 Pa s (23 °C!. The fluid composition was cho
sen such that it matched the density and refractive inde
the particles as well as possible. A small fraction~typically
0.3% of the suspension volume! of the particles was colored
with fabric dye to function as tracer particles. The density
the dyed particles was not notably affected: even after s
eral weeks no separation of dyed and undyed particles c
be observed in the suspensions. Samples were prepar
several particle volume fractions (20% – 45%). Matching
physical properties of the particles and suspending fluid
ables optical access, while sedimentation is eliminated.

The motion of the colored tracer particles in a count
rotating large radius, narrow gap Couette geometry~details
in Breedveldet al.5! is monitored by means of a digital CCD
camera. The counter-rotating feature is required to k
tracer particles within the observation window sufficien
long to capture long-time shear-induced self-diffusion for
mensionless timesġ Dt.1. With this geometry we were
able to observe an autocorrelation peak even forġ Dt52.8,
compared toġ Dt50.5 in the non-counter-rotating setup4

The large radius~120 mm! and narrow gap~4 mm! design
minimizes the influences of curvature and prevents migra
Downloaded 04 Jun 2002 to 128.111.83.121. Redistribution subject to A
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due to gradient diffusion. The images are stored real-time
sequences of 200 images through a frame grabber~Matrox
Pulsar! which is controlled by dedicated image grabbin
software~Hispa!. By repeating the grabbing procedure lar
image sets are obtained.

B. Method

The measuring technique is based on spatial correla
of tracer positions in a concentrated suspension under sh
this method we developed originally for measuringD̂yy and
D̂zz.4,5 Following this approach, first all tracer positions a
determined in the sequence of video images using comm
cial image analysis software~Optimas, Media Cybernetics!.
After obtaining the tracer positions, the actual correlati
procedure is applied. The successive steps of this proce
are illustrated in Fig. 1.

The upper half of Fig. 1 displays two subsequent imag
in which a number of tracer particles appear as detected
the image analysis software. The macroscopic flow field
drawn on the left. The tracer positions in the first frame a
correlated to all tracers in the second frame. For this part
lar example, the result is a set of 435520 correlation vec-
tors, which are shown in the lower left-hand image. T
dashed lines denote cross-correlation vectors between d
ent particles and the solid vectors represent autocorrela
vectors. Only the latter contain information about partic
motion. However, in the experimental situation the parti
identity is a priori unknown when comparing pictures take
at relatively long time intervals, so that it is impossible
distinguish between cross- and autocorrelation vectors on
basis of the image sequence. However, for our correla
technique such knowledge is not required. Because of
different nature of cross- and autocorrelation vectors, sta
tical analysis of a large data set enables us to discrimin
between the two types and extract information about part
motion. In the lower right quadrant of Fig. 1 the vectors a
collected in a graph where they all point from the same o
gin. Due to the shear flow the autocorrelation vectors

FIG. 1. Example of the correlation procedure; upper panel: two subseq
images of the suspension under shear; lower left: network of auto-~—! and
cross-correlation~---! vectors; lower right: same set of vectors now pointin
all from the same origin.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



th
th
o

ou
b

y

a
d
ot

ca
ith
s
ne

in
m

ld
t

t
-
c-
th

re
o

he
d

ve

net
ata
cor-
e
on-

ly
sta-
ore
ent

,
im-

ce-
ong
ow

ob-

d

n-
per-

w

ri-

t
the
e

els

10531J. Chem. Phys., Vol. 116, No. 23, 15 June 2002 Shear-induced self-diffusion tensor
have a convective component to the right in addition to
stochastic component. Therefore they are all located in
area just to the right of the origin. The cross-correlations
the other hand are scattered all over the graph.

By repeating the correlation procedure for several th
sand image combinations, a histogram like Fig. 2 can
built of the correlation vectors (Dx,Dy). The insets depict
projections of the histogram along theDx andDy axes. The
histogram in Fig. 2 represents the experimental probabilitH
to detect a correlation vector (Dx,Dy), while observing the
tracer particles along the vorticity (z) direction:

H~Dx,Dy!5F~Dx,Dy!@Pe~Dx,Dy!1C#. ~3!

It contains two separate contributions: a central pe
Pe(Dx,Dy) that consists of the autocorrelation vectors an
backgroundC due to the cross-correlations. These are b
multiplied by the detection efficiencyF(Dx,Dy) for a cer-
tain correlation vector (Dx,Dy) to be observed;F is purely
determined by the shape of the observation window and
be calculated as the convolution of the window w
itself.5,12 Essentially,F accounts for the fact that it is les
likely to find a large displacement, compared to a small o
due to the finite size of the observation window.

The cross-correlation backgroundC is directly related to
the distribution of tracer particles over the observation w
dow. At high volume fraction of particles one expects so
structure in the pair distribution functiong(r ) and thus in the
distribution of tracer particles. However no structure cou
be observed in this distribution, not even when one correla
images with themselves (Dt50). This is due to the fact tha
a projection of the distribution~in this case along the vortic
ity direction! is observed. In this projection possible stru
tures in the distribution will be averaged out. Therefore
backgroundC is assumed to be constant at all values ofDt
and further analysis can be concentrated on the autocor
tion peak which contains information about the motion
tracer particles.

The histogram clarifies why the measurement ofDxx and
Dxy is more complicated than measurement of the ot
components: the stochastic displacements in the velocity
rection (x) are masked by variations in the macroscopic

FIG. 2. Histogram of correlation vectors (Dx,Dy) for a set of 8000 images

at ġ Dt51.10 andf50.35; the units along the horizontal axes are pix
andH is given in arbitrary~non-normalized! units.
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locity over the observation window~seevflow in Fig. 1!. Un-
like the example of Fig. 1 where the shear flow gave a
displacement to the right, Fig. 2 contains experimental d
taken in our counter-rotating geometry and thus the auto
relation peak is centered around the origin: the averagx
displacement of all particles equals zero. However, the c
vective flow still varies as a function ofy coordinate and
because of this the central peak is much wider in thex than
in the y direction.

The convective motion can be eliminated in a fair
simple way: since the macroscopic simple shear flow is
tionary and the positions of tracer particles are known bef
performing the correlation step, the convective displacem

Dxc5( 1
2ġ(y01y)1v0)Dt ex can be subtracted. Herey0 and

y5y01Dy denote they component of the tracer position in
respectively, the first and second image of the correlated
age pair.

Using the transformationDx2Dxc→Dx where the latter
Dx now represents only the stochastic part of the displa
ment, Fig. 2 changes to Fig. 3. Note from the scales al
the axes that the central autocorrelation peak in Fig. 3 is n
much narrower in thex direction; Pe(Dx,Dy) is no longer
broadened by variations in the convective flow over the
servation window. The efficiency functionF̃(Dx,Dy) differs
from F in Fig. 2 since the image window is slightly distorte
by the applied transformation, butF̃ can still be calculated
directly from the known geometry of the observation wi
dow after the above coordinate transformation has been
formed. The cross-correlation termC is not affected by the
transformation: it was independent of (Dx,Dy) in the origi-
nal situation and remains constant.

The contour plot of the peak in the inset of Fig. 3 no
reveals important qualitative information aboutD̂xy : the
main axes of the peak are tilted which indicates thatD̂xy

Þ0. Taking into account that the shear flow in our expe
ment was applied in the negativex direction ~see Fig. 4!,
it can be concluded thatD̂xy,0. Physically this means tha
a particle undergoing a stochastic displacement in
1x (2x) direction most likely simultaneously moves in th
2y (1y) direction.

FIG. 3. Histogram of correlation vectors (Dx,Dy) for the data set of Fig. 2;
inset shows the contour lines of the central peak.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The shear flow parametersġ andv0 needed for this con-
vective motion subtraction are determined from the data
instead of using an external estimate based on the rotati
speed of the Couette geometry. After calculation of the c
relation vectors, a histogram can be built plotting the exp
mental probability of a displacementDx at differenty posi-
tions, using the average position1

2 (y01y) for the y position
during the correlation timeDt. Examples of such a histogram
are presented in Fig. 4. The top view of the histogram
shown and the height~probability! is coded in gray scales
lighter scales indicating higher probabilities. The autocor
lation vectors are located in the central peak~light band! in
this figure as well. The center of the band represents
average displacement and thereby the velocity profile in
observation window. By performing a linear fit to the
graphs, the parametersġ andv0 were obtained.

In case of observation along the vorticity axis~e.g., Fig.
1! information about displacements in thez direction is lost
and a two-dimensional distribution in thex–y plane is mea-
sured as in Fig. 3. In order to determineD̂zz the particles
should be observed along the gradient direction and the
tribution in thex–y plane can be analyzed, as was done i
previous study.5

III. LANGEVIN EQUATION

Although the experimental method to remove the co
vective flow by using the averagey position of the tracers is
intuitive, a closer look at the theoretical implications of th
coordinate transformation is required to justify the approa

From experimental histograms like Fig. 3 values f
^DxDx&, ^DxDy&, and^DyDy& can be obtained. These ca
be compared directly to theoretical predictions. For a part
subjected to simple shear flow the following force balance
Langevin equation can be formulated:

z~v01L•r ~ t !2v~ t !!1Fs~ t !50, ~4!

wherez is the hydrodynamic friction factor of the particle
L5ġ exey is the velocity gradient tensor,v05v0 ex the flow
velocity aty50, andFs(t) the stochastic force acting on th
particle due to hydrodynamic interactions with all other p
ticles in the fluid. This force is characterized by the follow
ing properties:

FIG. 4. Top view of three experimental histograms of correlation vectorsDx
as a function of the averagey position during the time interval,yave; data set

is the same as for Fig. 2; from left to right the strain is, respectively,ġ Dt
50.14, 0.55, and 1.10.
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^Fs~ t !&50,
~5!

^Fs~ t !Fs~ t8!&5G~ t2t8!.

The tensorG(s) is assumed to be symmetric:G(s)5GT(s).
Moreover we assume that for large time differencesut2t8u
the autocorrelation of the force vanishes faster than w
ut2t8u23, i.e., lims→`(s3G(s))50. The solution of Eq.~4!
can be found in14

r ~ t !5r01~v01L•r0!t1 1
2 ~L•v0!t2

1
1

zE0

t

~ I1~ t2t8!L !•Fs~ t8!dt8, ~6!

whereI is the unit tensor andr0 the position of the particle a
t50. The average displacements are now equal to

^x2x0&5S y01
v0

ġ
D g,

~7!
^y2y0&5^z2z0&50,

whereg5ġDt. Using the transformation described in Se
II B:

Dx5x2x02g~y1y0!/2,

Dy5y2y0 ,

Dz5z2z0 ,

one obtains for the mean square displacements:

^DxDx&

2a2
5gQxx

(0)~g!2Qxx
(1)~g!,

1 1
6 Qyy

(3)~g!2 1
4 g2Qyy

(1)~g!1 1
12 g3Qyy

(0)~g!,

^DxDy&

2a2
5gQxy

(0)~g!2Qxy
(1)~g!,

~8!
^DyDy&

2a2
5gQyy

(0)~g!2Qyy
(1)~g!,

^DzDz&

2a2
5gQzz

(0)~g!2Qzz
(1)~g!.

Here the following definition has been used:

Qi j
(n)~g!5E

0

g

qnĜi j ~q! dq ~9!

with Ĝi j (ġt)5Gi j (t)/(aġz)2. In the limit for g→` the co-
efficientsQi j

(n)(g) become constant, due to the finite autoc
relation time of the stochastic force, while forn50 they are
related to the diffusion coefficients by

D̂ i j 5Qi j
(0)~`!. ~10!

From Eq.~8! one observes that, for sufficiently large valu
of g, ^DxDy&, ^DyDy&, and ^DzDz& indeed grow linearly
with g, showing an offset forg50, but the behavior of
^DxDx& is less obvious. However,Qxx

(0)(`) can be deter-
mined from
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



-

n

ts

y

th
an
l
i-

in
se

fo
-
y

ar

t
fi-

fo
a
nt
e

tim

he
om

nc-

e

n
our

al-
e-
in

n

10533J. Chem. Phys., Vol. 116, No. 23, 15 June 2002 Shear-induced self-diffusion tensor
lim
g→`

d

dg

^DxDx&

2a2
5Qxx

(0)~`!2
1

2
gQyy

(1)~`!

1 1
4 g2Qyy

(0)~`!, ~11!

whereQyy
(0)(`) is the slope of̂ DyDy&/(2a2) plotted against

the straing for g→` andQyy
(1)(`) is determined by extrapo

lating the linear part of this curve towardg50.
For a fully diffusive process~i.e., on all time scales! the

autocorrelation function is given by:G(s)5H d(s) where
d(s) is the Dirac delta function andH a symmetric tensor
whose coefficients are constant. In that caseQ(n)50 for
n.0, whileQ(0)5D̂, independent ofg, so Eq.~8! reduces to
the mean square displacements of particles diffusing i
simple shear flow.14

IV. RESULTS

For a quantitative analysis of the diffusion coefficien
we check the time dependence of Eq.~8!. The quantities
^Dx2&, ^Dy2&, and ^DxDy& can be determined directly b
calculating

^Dr iDr j&5E E ~Dr iDr j ! Pe~Dx,Dy!dDx dDy

from the experimentally obtained autocorrelation peakPe in
Fig. 3. In this procedure we have to take into account that
experimental distribution contains an unknown const
cross-correlation contributionC and a known geometrica
prefactorF̃ @Eq. ~3!#. Therefore the histogram must be d
vided by the efficiency functionF̃ before the calculation is
done, even if the variations of this function are very small
the neighborhood of the autocorrelation peak, as can be
in Fig. 3.

By measuring^Dx2&, ^Dy2&, and ^DxDy& for various
values of the dimensionless timeg5ġ Dt the diffusive scal-
ing can be checked. Here it is important to notice that,
sufficiently large values ofġ Dt, Eq. ~8! reveals three con
tributions to ^Dx2&: one diffusive term that grows linearl
with time and two terms that grow with (ġ Dt)2 and (ġ Dt)3,
respectively. This is caused by diffusion in they direction,
followed by convection along a different streamline in thex
direction.

Figure 5 shows the averages of Eq.~8! as a function of
ġ Dt for a particle volume fraction of 0.45. The averages
made dimensionless with the particle radius squared,a2.
Note that two scales have been used in order to capture
information in a single graph. To obtain the diffusion coef
cientDxx from the slope of the curve,^Dx2&/a22C has been
plotted against ġ Dt, where C is defined by: C

5 1
12 (ġ Dt)2(^Dy2&12 ^Dy2&0)/a2. ^Dy2&0 is the extrapo-

lation of the linear part of the (^Dy2&,ġ Dt) curve toward
ġ Dt50.

The evolution of the mean square displacements is
1,ġ Dt,3 well-described by linear fits, so the process c
indeed be described as diffusive. The diffusion coefficie
are calculated as half the slope of the fitted lines. From th
observations one may conclude that the autocorrelation
Downloaded 04 Jun 2002 to 128.111.83.121. Redistribution subject to A
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of the stochastic hydrodynamic force is of the order ofġ21.
For ġ Dt,1 the averages scale nonlinearly with time; t
motion of the particles is nondiffusive as was expected fr
Eq. ~8!. The measured̂DrDr & dependence onġ Dt in this
regime can be related to the velocity autocorrelation fu
tion:

^v i~0!v j~ t !&5
1

z2
Gi j ~ t !5

1

2

d2

dt2
^Dr iDr j&, ~12!

where the index pair$ i j % can be$xy%, $yy%, or $zz%. For
^vx(0)vx(t)& the situation is more complicated due to th
convective part of the velocity in this direction.

In Fig. 6 the coefficients of shear-induced self-diffusio
as obtained in this study are combined with the results of
previous work5 to provide information on the full diffusion
tensor as a function of particle volume fraction. As was
ready noticed qualitatively in Fig. 3, the diffusion in the v
locity direction (x) is an order of magnitude larger than
the other directions, while the off-diagonal componentD̂xy is
negative and of the same magnitude as the componentsD̂yy

and D̂zz.

FIG. 5. Evolution of the averages of Eq.~8! with dimensionless timeġ Dt

for a suspension withf50.45. The lines represent the linear fits forġ Dt

.1; C5 (1/12a2) (ġ Dt)2(^Dy2&12 ^Dy2&0); note the different scale used
for ^Dx2&.

FIG. 6. Dimensionless coefficients of shear-induced self-diffusionD̂ i j as a
function of particle volume fractionf; note that a different scale has bee

used forD̂xx .
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 7. The coefficientsD̂xx ~a!, D̂yy ~b!, D̂zz ~c!, and

D̂xy ~d! as a function of volume fraction; (n) represent
data from Ref. 3, (s) data from Ref. 6, (L) numerical
data from Ref. 9, and (¹) from Ref. 16, while (d)
were measured in this study.
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V. DISCUSSION AND CONCLUSION

In contrast to the earlier measuredDyy and Dzz both
Dxx andDxy do not significantly vary with volume fraction
over the available data range. These are, to our best kn
edge, the first experimental data on the full diffusion tens
Recently, however, these quantities have been determine
numerical calculations using the Stokesian dynam
method.15 In this study it was also found thatDxy is negative.
Moreover, the authors give a physical explanation for
negativeDxy value, based on the two particle pair distrib
tion function at high Pe´clet numbers where hydrodynamic
dominates the process. In a second study from this grou9 it
was found that at low volume fractions the value forDxx is
significantly larger than those ofDyy or Dzz. Their results
show however a decrease ofDxx with increasing volume
fraction. ThatDxx is significantly larger thanDyy or Dzz is in
keeping with a theoretical study of Acrivoset al.16 They ar-
gued that at low volume fractionsDyy andDzz should grow
with f2 but they predicted thatDxx grows withf ln f21 due
to a divergence in̂Dx2& in an isolated two particle collision
for f→0. This divergence is rendered finite due to the f
that the slow collisions, causing the divergence, are cutof
occasional collisions with other particles. This leads to
nondivergentf dependence, given previously. Hence for lo
volume fractionsDxx is expected to be significantly large
than Dyy and Dzz. Their values, however, are lower tha
ours; e.g., a factor 4 atf50.2.

For comparison the numerical results mention
previously9,15 are given in Fig. 7 together with the availab
experimental results from us and other researchers.1–3 Al-
though the scattering is large, the experimental results ar
reasonable agreement with each other. The numerical res
however, are systematically smaller than the experime
results, typically a factor 2, but forDxx it is about a factor 6.
Sierou and Brady9 explain this from their observation tha
the autocorrelation time of the stochastic force is not of
order (1/ġ) but (10/ġ), which means that our measuremen
were done for to small strainsġ Dt. This is, however, in
contradiction with the observations of Leighton and Acrivo2
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and Phan and Leighton3 which were done at much large
strains ġ Dt.10. To settle the discussion on this point
should be worthwhile to extend the measurements to la
strains. At the moment this is not possible due to limitatio
in the experimental method of which the nonperfect opti
density matching is the most important; the particles
slightly inhomogeneous and so matching can not be
proved.

To describe our data we used a Langevin approach
evaluate the problem of the nondiffusive short time sca
This approach has shown to be useful, however other
proaches are possible. Sierou and Brady9 start with a modi-
fied master equation for the displacement probability fu
tion resulting in time dependent diffusion coefficients. Bo
approaches give the same description of the diffusive beh
ior for large strains,ġ Dt@1, resulting in the same expres
sions for the long time diffusion coefficients, but fo
small strains,ġ Dt!1, the nondiffusive behavior is treate
different.

In conclusion, for time scalesġ Dt.1 the average
squared displacements^DrDr & scale witha2ġ Dt so the pro-
cess is indeed diffusive. The stochastic part of the part
motion is anisotropic and concentration dependent;Dzz and
Dyy strongly increase with volume fractionf, while Dxx and
Dxy show hardly anyf dependence.Dxx is almost one order
of magnitude larger than the other components ofD andDxy

is negative. For shorter time scales the stochastic part of
particle motion can be separated from the convective mot
too. On these time scales the measured^DrDr & provides
information about the velocity autocorrelation functio
which will be subject of further research.
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