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Abstract

Tubular structures of a continuous particle size gradient are formed if a hollow cylindrical mold 6lled with a suspension
of dispersed powder with a size distribution is centrifuged around its center axis. The mean particle size in the 6nal structure
increases gradually with increasing radial coordinate. Because the bulk properties can be optimized simultaneously with the surface
composition, this process has advantages for the production of porous tubular ceramic membrane supports in case subsequent
membrane layers are coated on the inner surface of the support. Particle velocities and concentrations in the suspension, as well
as the compact pro6le, are numerically analyzed for completely 6lled molds. Using the analysis the composition at each location
in the compact can be predicted, which can be used to calculate the permeance (:ux per unit pressure di;erence), as well as the
particle composition of the inner and outer surfaces. ? 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Porous ceramic membrane supports are often used as
substrates for the subsequent deposition of a thin mem-
brane with separative properties. The support provides
mechanical stability (e.g., to withstand the pressure dif-
ference over the membrane) so that the thickness of the
actual membrane can be minimized, resulting in a higher
permeance (:ux per unit pressure di;erence) (Biesheuvel
& Verweij, 1999). The required thickness of the mem-
brane is further limited by the smoothness of the support
because the membrane material must cover all irregulari-
ties of the support to form a continuous, defect-free layer.

∗ Corresponding author. Current a@liation: Shell Global Solutions
International B.V., Badhuisweg 3, 1031 CM Amsterdam, Netherlands.
Tel.: +31-20-630-2349; fax: +31-20-630-3964.

E-mail address: maarten.p.m.biesheuvel@opc.shell.com
(P. Maarten Biesheuvel).

1 Current a@liation: Department of Chemical Technology, Univer-
sity of Twente, Netherlands.

2 Current a@liation: Department of Materials Science and Engi-
neering, The Ohio State University, Columbus, OH 43210, USA.

Ceramic membrane supports for gas- and liquid-phase
separations are often cylindrical and not :at, because of
several advantages in membrane modules:

• In general, a higher membrane surface area per unit of
module volume.

• Flow pro6les through tubes are better de6ned with less
risk of dead zones.

• Better match to existing reactor concepts that are often
based on tubular structures.

Cylindrical ceramic membrane supports produced by
extrusion techniques are commercially available and ap-
plied in industrial separation units, but as these supports
may have rather low surface smoothness (e.g. 6 �m) Nij-
meijer, Huiskes, Sibelt, Kruidhof, and Verweij (1998)
used centrifugal casting to produce cylindrical membrane
supports from an electrostatically stabilized suspension
of submicron �-alumina powder, which resulted in a
support with a more homogeneous particle structure. The
supports were sintered slightly to increase the handling
strength while keeping the open porosity intact as much as
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possible. After sintering, supports were obtained
with smooth inner (roughness ∼ 0:25 �m) and outer
(∼ 0:9 �m) surfaces.
Membranes can be coated on the inner or outer surface

of these tubular supports. Advantages of application on
the inner surface (compared to the outer surface) are as
follows:

• After coating of the thin separative membrane onto the
support, the membrane, by its sheer location, is better
protected during the subsequent manufacturing steps of
drying, sintering, machining and assembly in modules.

• The following reasoning suggests to locate the sep-
arative membrane layer at the feed side, and the
feed side to coincide with the core of the tubes.
To prevent accumulation in the support of compo-
nents that are retained by the membrane, the separa-
tive membrane layer must be located directly at the
high-pressure (feed) side. Else, permeance decreases
signi6cantly: simulations with the Dusty Gas Model
showed that for a H2=CH4 mixture in a three-layer
�-alumina=�-alumina=silica system the permeance of
hydrogen was signi6cantly lower with the (selective)
silica layer at the low-pressure (permeate) side (N.E.
Benes, personal communication). This is especially
true at high pressures because binary di;usion coef-
6cients (e.g. of H2=CH4) are inversely proportional
to pressure. At the feed side careful control of :ow
pro6les is generally more critical than on the perme-
ate side because fouling=cake layer formation occur
at the feed side, and because a high selectivity (in
membrane reactors) may require plug :ow conditions.
These demands are much better met within tubes than
in the intermediary space between tubes.

Disadvantages of application on the inner surface
(compared to the outer surface) are as follows:

• The lower surface area per unit module volume de-
creases the separation capacity. However, for a thin
support (compared to the tube diameter) this e;ect is
marginal.

• With the inside as high-pressure side (same side as
membrane; see above) a tensile stress develops in the
support instead of compressive stress. Ceramic mate-
rials withstand a compressive stress better than a ten-
sile stress. However, the tensile strength of ceramics
is often su@cient (dependent on tube radius and sup-
port thickness) to withstand pressures up to 50 bars
(Biesheuvel & Verweij, 1999; Brinkman, Van Eijk,
Meinema, & Terpstra, 1999) while such high pressures
are not generally used due to high costs of compres-
sion and necessary safety measures.

In this paper, we discuss how centrifugal casting of dis-
persed particles results in a support (‘compact’) with a
decreasing particle size from the outside to the inside of

the tube. Such a support may combine small particles
on the inner surface—high smoothness and suitable for
subsequent membrane application on that surface—with
large particles over the larger part of the support, result-
ing in a high permeance of the support when compared
to a support consisting solely of the particles of the in-
ner surface. From former work (Biesheuvel & Verweij,
2000; Biesheuvel, 2000) we know that in suspensions
of repulsive particles (e.g., by electrostatic stabilization),
particles of di;erent size have di;erent settling velocities
resulting in a graded structure. A prerequisite is the pres-
ence of an external force that acts on the particles such
as gravity or a centrifugal force.
The present paper is related to our former papers on

centrifugal casting with suspensions of one particle type
(Biesheuvel, Nijmeijer, & Verweij, 1998) and on cen-
trifugal casting of suspensions containing two di;erent
particle types (Biesheuvel & Verweij, 2000). In the 6rst a
gradient in particle size over the support is not considered
while the latter focuses on molds that are not completely
6lled, resulting (for two particle types) in the develop-
ment of two distinct layers, instead of a smoothly graded
support that develops in completely 6lled molds. In case
of partial mold 6lling, modeling of systems of more than
two particle types is very di@cult, requiring the solu-
tions of partial di;erential equations while taking care
of the extreme sharp changes over the ‘shocks’ between
di;erent suspension phases. Only for dilute suspensions,
e.g. at a volume concentration lower than 2%, somewhat
simpler solutions can be derived since interparticle hy-
drodynamic interaction can be neglected. However, for a
completely 6lled mold that rotates around its center axis,
particle concentrations and velocities can be calculated
from a set of ordinary di;erential equations only, due to
the fact that the single initial suspension phase does not
split up into several phases and concentration gradients
do not develop because the particle :ux is proportional to
the radial coordinate (Biesheuvel, Nijmeijer, & Verweij,
1998; Biesheuvel & Verweij, 2000). Note that concentra-
tions and composition of the suspension phase do change
in time. The present paper is therefore focused on the
phenomena occurring when the number of particle types
increases from one or two to numbers that approximate
a continuous size distribution (10–25).
To our knowledge, modeling the structure of a mate-

rial formed from a powder with a particle size distribu-
tion has never been done before. Mathematical descrip-
tion of particlemotion in a suspension of more than a few
particle types (i.e., approximating a continuous size dis-
tribution) has been done for the case of gravity settling
(Davis & Hassen, 1988; typically 25 particle types) but
not for centrifugation. In the gravity case, distinct sus-
pension phases always develop, in contrast to the case of
a completely 6lled mold rotating around its center axis
in which case—as discussed above—the suspension re-
mains a single phase without composition gradients.
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The fact that no concentration gradients develop in a
completely 6lled cylindrical mold centrifuged around its
center axis has an interesting consequence: after a certain
period of centrifugation, we can take an arbitrary sample
from the suspension (independent of location) and from
this sample, which represents the entire suspension phase,
we can determine the size distribution, for instance, by a
light scattering technique (see Section 3). The fact that
we do not need to know the exact location simpli6es sam-
pling enormously. In addition, we can take a large sample
which is necessary when the suspension becomes dilute.
Such an experiment is impossible for a mold that is not
completely 6lled, for centrifugation around an axis per-
pendicular to the cylinder’s center axis (uni-axial geom-
etry) and under gravity settling. This simple and precise
technique may be very useful to study the sedimentation
behavior of concentrated, multicomponent suspensions
of particles in the nanometer range. Another technique
which we investigated was the analysis by scanning elec-
tron microscopy of a cross-section of a sintered support
tube. However, resolution was too low to measure either
a size distribution at a certain spot (radial coordinate) or
a size gradient (change of particle size with radial coor-
dinate).
In the present paper, we discuss, validate and eval-

uate a transport model that predicts the particle size
distribution in a membrane support consolidated by
centrifugal casting. Only a completely 6lled mold is
considered which largely simpli6es calculations and
experiments, as discussed above.

2. Theoretical background

Particle velocities in multicomponent batch sediment-
ing systems are described by (Biesheuvel, Verweij, &
Breedveld 2001)

Ui =Ui0hi
	i − 	s
	i − 	0

−
m∑
j=1

Uj0hj
	j − 	s
	j − 	0

j (1)

with the particle velocity at in6nite dilution, Ui0, given
by Stokes’ law

Ui0 =
d2
i (	i − 	0)
18�

!2r (2)

which is valid in laminar :ow for spherical particles in
the absence of wall e;ects. Here, m is the number of dif-
ferent species, i the species index, di is the particle diam-
eter, 	i the particle density, 	0 the liquid density, ! the
rotational velocity (rad=s), r the radial coordinate, � the
Newtonian viscosity of the liquid and hi the particle hin-
drance function that incorporates hydrodynamic particle
interactions.
The suspension density 	s is given by

	s = (1− tot)	0 +
m∑
j=1

j	j; (3)

tot being the total volumetric particle concentration in
suspension

tot =
m∑
j=1

j: (4)

State-of-the-art expressions for the hindrance function hi
are given by Patwardhan and Tien (1985) incorporating
variations in local porosity around particles of di;erent
size

hi =

(
1−

(
1 +

d�
di

)−3
)n−2

;

d� =

∑m
j=1 djj

tot
(−1=3

tot − 1):

(5)

The power n depends on Reynolds number and particle
size to vessel size ratio, but for laminar :ow without wall
e;ects, n = 4:65 (e.g., Biesheuvel, 2000; Biesheuvel, et
al., 2000). When the local particle concentration (1 +
d�d−1

i )−3 (local at the particle scale) is set equal to the
average suspension concentration tot (averaged over a
large ensemble of particles but dependent on the macro-
scopic radial coordinate r), (5) simpli6es to (Masliyah,
1979)

hi = (1− tot)n−2: (6)

Particle concentrations in suspension are given by a par-
ticle mass balance (equation of continuity for species i),
which, for a one-dimensional cylindrical geometry, reads

@i

@t
=−1

r
@
@r

(riUi): (7)

Because all particles have the same density 	, combina-
tion of (1), (2) and (7) results for an initially homoge-
neous suspension in

@i
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=−i!2(	− 	0)
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j hjj


 (1− tot) (8)

with hi given by (5). We refer to Biesheuvel et al. (1998),
Biesheuvel and Verweij (2000) and references therein for
a detailed account why gradients in particle concentration
do not develop for an initially homogeneous suspension.
With (6), (8) simpli6es to

@i

@t
=−i!2(	− 	0)

9�


d2

i −
m∑
j=1

d2
jj


 (1− tot)n−1:

(9)

Growth of the compact follows from a Kynch (1952)
balance over the compact–suspension boundary (‘front’).
In its most general form (multicomponent suspension,
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densi6cation, in6ltration by 6nes and kinematic waves
all allowed for) it is given by
m∑
j=1

(Uj −Uc)j =
m∑
j=1

(Uc;j −Uc)c;j: (10)

Here, the particle velocity in suspension Uj is considered
exactly at the compact front (rc), while Uc is the velocity
of the front, Uc;j the velocity of particles within the com-
pact at rc and c;j the volumetric concentration of parti-
cles in the compact at rc. This form of the Kynch balance
is relevant if di;erent particles within the compact have
di;erent velocities, e.g., when the small particles trickle
through the matrix structure of the larger particles (Civan,
1998; Hampton, Savage, & Drew, 1992). However, as-
suming that at the compact–suspension front all particles
in the compact have the same velocity (∀j :Uc;j=Uc;all),
(10) simpli6es to
m∑
j=1

(Uj −Uc)j = (Uc;all −Uc)c;
m∑
j=1

c;j = c: (11)

The composition of the layer that deposits at a certain
time can be derived from (11)

fi =
(Ui −Uc)i∑m
j=1(Uj −Uc)j

;
m∑
i=1

fi = 1: (12)

Here, fi is the fraction of particle type i. Biesheuvel and
Verweij (2000) already derive (12), but on the basis of
an incompressible material (i.e., Eq. (13)). That the equa-
tion for fi also holds for a compressible compact (thus
under conditions of densi6cation, Uc;all �= 0) can be un-
derstood by the fact that during densi6cation particles in a
given plane remain within that plane, so that even though
the total concentration c may increase, the fractions fi

remain the same.
To solve Eqs. (11) and (12), information is needed on

the change in time of the compact concentration c, sus-
pension concentrations i and particle velocities at both
sides of the suspension–compact front Uc;all and Ui. From
this point forward, we assume that the suspension and the
compact are separated by a kinematic shock (Biesheuvel
et al., 1998). Therefore, i and Ui follow from solution
of the continuity equations for the bulk of the suspension,
(1) and (8). We further assume zero compact densi6ca-
tion (Uc;all = 0). Therefore, (11) simpli6es to
m∑
j=1

(Uj −Uc)j =−Ucc: (13)

After rewriting, (13) results in

drc
dt

=Uc =−
∑m

j=1Ujj

c − tot
: (14)

In this work we will use a constant c—independent
of the particle size distribution function—for reasons of
simplicity. For a two-component compact of spherical
particles Biesheuvel (2000) uses the Westman–Hugill

equations while we refer to Yu and Standish (1987) for
expressions for the packing factor of a sediment consist-
ing of spherical particles with a size distribution. As long
as the expression for c in terms of particle fractions and
sizes is explicit, the numerical scheme does not essen-
tially become more complicated.

3. Materials and methods

Experiments were performed with a 20 vol% suspen-
sion of �-alumina powder (AKP-15, Sumitomo, Tokyo,
Japan) in water stabilized with nitric acid at a concen-
tration of 0:02 M HNO3. The powder has a volume av-
erage size dav of ∼ 750 nm with ¿ 90% within the
range 500–1100 nm. The suspension is ready for use af-
ter ultrasonic treatment to obtain optimum particle dis-
persion and 6ltration over a 200 �m 6lter to remove
agglomerates (Biesheuvel & Verweij, 1999). Note that
the AKP-powder series have a very sharp particle size
distribution compared to other commercially available
alumina powders in that size range. Therefore, the ef-
fects that we measured with AKP-15 will probably be
even more pronounced for many other ceramic submicron
powders.
Centrifugation is done in the same home-made cen-

trifuge as used in Nijmeijer et al. (1998) and Biesheuvel
et al. (1998). The cylindrical metal molds (length 6
–10 cm; internal diameter 2 cm) are 6lled completely
with suspension and stoppered on both ends using
Te:on caps with rubber rings. After mounting in the
centrifuge, the rotational velocity (of the steel molds
around their center axis) is increased in ∼ 10 s to 3500
rotations per minute (! = 367 rad=s). After 2.5, 5, 7.5
or 10 min, the velocity is decreased again in ∼ 10 s.
These periods are short compared to the actual process
time (2 × 10 s on 150 s (=13%) is the largest error
made). Note that as particle velocities scale with !2,
the in:uence of the periods of start-up and deceleration
on compact formation is actually well below 13%, see
Eq. (2). Moreover, we assume that deceleration was
su@ciently slow (∼ 37 rad=s2) to avoid redispersion of
particles that were already deposited (Biesheuvel et al.,
1998).
After centrifugation for a certain time, the mold was

opened and part of the suspension pipetted from the in-
ner core of the mold and transferred into the recycle loop
of an optical size analyzer (Microtrac X-100, Leeds and
Northrup, North Wales, PA, USA) to determine the com-
position of the suspension. Centrifugation was not contin-
ued but suspension and formed compact were removed. A
new centrifugation run always started with fresh suspen-
sion. For centrifugation of 5 min and more the suspension
was very dilute—most particles had already deposited—
and a large percentage (up to 50–75%) of the suspension
volume in the mold had to be used to obtain a su@cient
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Fig. 1. Suspension composition. Comparison of experimental results
(dots connected with dashed lines) with model predictions (solid
lines) for 2.5, 5, 7.5 and 10 min after start of rotation (0 min).

particle concentration in the recycle loop of the size an-
alyzer.
Numerical calculations on particle concentration and

velocity in the suspension, the compact front velocity Uc

and its composition fi follow from solution of the ordi-
nary di;erential equations (8)=(9) and (14) and the alge-
braic equations (4), (5) and (12). The initial conditions
are

t = 0 : rc = rm; i = i;0:

This set of di;erential and algebraic equations is solved
numerically with a third order semi-implicit Runge–Kutta
scheme combined with a Bulirsch–Stoer extrapolation
method for step size adjustment. Calculations were done
with the BESIRK-subroutine of Maple, a computer al-
gebra system (Schwalbe, Kooijman, & Taylor, 1996).

4. Results

4.1. Suspension

The experiments as discussed in the former section are
compared with simulation results in Fig. 1. Simulation
results using Eq. (9) are presented here, but results based
on Eq. (8) are very similar: only for 2:5 min the maximum
of the distribution is shifted somewhat to higher sizes
(∼ 20 nm) for Eq. (8), while for larger times no di;erence
can be observed because the suspension is very diluted
and the hindrance factors approach unity, irrespective of
the hindrance function used. Data used in the simulations
are != 367 rad=s; �= 1 mPa s; 	= 3970 kg=m3; 	0 =
1000 kg=m3; n=4:65; m=24; rm=10 mm and c=0:55.

The initial, measured size distribution was used as in-
put in the model except for size fractions of 446 nm
and smaller. This part of the distribution was replaced
by a Gaussian distribution obtained by 6tting part of the

Fig. 2. Simulated suspension concentration as function of time and
particle size. The upper right curve is the initial composition. The
mode of the curve shift to smaller sizes while the total suspension
concentration tot decreases sharply in time. Numbers give the time
in seconds.

original distribution (particle size 446 to 750 nm) with
f=�−1(2�)−1=2 exp(− 1

2 ((d−dav)=�)2) (f being the fre-
quency or di;erential mass; dav = 750 nm; �=160 nm)
and extrapolating this equation to sizes below 446 nm.
We have chosen this procedure because the measured ini-
tial fraction for sizes of 344 nm and smaller is zero, which
is erroneous because these particle types are detected in
the suspension after 7.5 and 10 min of centrifugation,
when the larger particles have deposited. The small par-
ticles are not measured in the initial suspension because
their concentration is below the detector threshold.
With this modi6cation of the initial conditions we 6nd

a comparison that—though clearly not of the quality we
would have wished—is satisfactorily at this point in the
analysis. The deviation of model and experiment can
partly be attributed to the experimental di@culties in de-
termining the small particle tail of the initial size distri-
bution. Also, a bimodal distribution with the small parti-
cle peak between 330 and 360 nm was observed after 5
and 7:5 min of centrifugation, which shows that the ini-
tial suspension (powder) contained a fraction of ‘6nes’
of this size, unobserved in the analysis of the original
powder.
Further simulations are made based on Eq. (9) but

with the 24 fractions of Fig. 1 reduced to m = 12 frac-
tions by grouping (di; i)-pairs, which results in d1 =
1567 nm; d2 = 1318 nm; d3 = 1108 nm; d4 = 932 nm;
d5 = 784 nm; d6 = 659 nm; d7 = 554 nm; d8 = 466 nm;
d9=392 nm; d10=329:5 nm; d11=277 nm; d12=233 nm;
1;0 = 0:00802; 2;0 = 0:0436; 3;0 = 0:0167; 4;0 =
0:0385; 5;0 = 0:0518; 6;0 = 0:0443; 7;0 = 0:0252;
8;0 = 0:0112; 9;0 = 0:00440; 10;0 = 0:00170; 11;0 =
0:000680; 12;0 = 0:000289.
Fig. 2 shows that the mode of the particle size dis-

tribution in the suspension shifts to lower sizes in time
while the total particle concentration tot (given by
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Fig. 3. Concentrations in suspension for the 12 particle species. The
concentration of particles increases initially for the smaller particle
types 10, 11 and 12. The larger the particle, the faster the concentration
decreases in time.

Fig. 4. Particle velocities in suspension at the suspension–compact
front rc (rc decreases in time from rm to rc;∞). Note that the maxima
in Fig. 3 (for particle species 10–12) coincide exactly with the time
at which particle velocities are zero in Fig. 4.

(dm − d1)−1
∫ dm
d1
i dd) decreases in time. Several fea-

tures are more clearly depicted in Fig. 3, such as the
fact that the concentration of the three smallest particle
species (10–12) initially increases. The rate of concen-
tration decrease (with time) increases with particle size
(d=ddi |di=dt|¿ 0).
Particle velocities at the compact front rc are shown

in Fig. 4. Initially, velocities are negative for the three
smallest species because their slip velocity with the liquid
is low and large particles moving outward displace the
liquid and these small particles (the liquid velocity is al-
ways and everywhere negative, thus pointing inward). As
a result, for the small particle types the volume concen-
tration in the suspension phase initially increases. Particle
velocities increase with time because tot decreases and
the particle hindrance function hi increases, see Eq. (1).

Fig. 5. Particle size distribution for several values of the dimensionless
location DL (DL=0 being the inside of the compact at rc;∞=8:0 mm
and DL = 1 the outside at rm = 10 mm).

Because rc decreases in time (starting at rm = 10:0 mm,
while rc;∞ = 8:0 mm) and particle velocities are propor-
tional to r the particle velocity for a certain species i at
a certain coordinate r∗ increases faster than depicted in
Fig. 4.

4.2. Compact

The simulations also reveal interesting features about
the compact pro6le. Fig. 5 shows the change of size
distribution with dimensionless location in the compact
DL=(rc− rc;∞)(rm− rc;∞)−1. Compact formation starts
at rc=rm (outer layer, DL=1) and ends when the last par-
ticles deposit at rc= rc;∞ (inner layer, DL=0). The par-
ticle size distribution in the compact at DL=1 is skewed
toward larger particles compared to the (initial) suspen-
sion distribution from which it is formed (upper right
curve in Fig. 2). All particles are present in the 6rst layers
formed. Subsequently, deposited layers are enriched in
small particles: the mode moves to a lower size. Further-
more, the distribution function sharpens with decreasing
DL. Fig. 6 shows the fraction of each species as function
of location. The fraction of large particles decreases in
time (with decreasing DL): e.g. for DL¡ 0:1, the frac-
tion of particle species 3 has virtually become zero. In
time (with decreasing DL) more and more sizes experi-
ence this destiny and 6nally (last layer at DL = 0) only
the smallest size remains at a fraction of unity (f1 = 1).
The continuum approach fails when signi6cant gradi-

ents exist at the scale of the particle. For a typical small-
est particle size of 200 nm and a 6nal compact thickness
of 2 mm, this implies that all predictions in Figs. 5 and
6 for DL¡ 1× 10−4 must be discarded. Thus, the com-
position of the 6nal inner layer is best approximated—in
this case—by the distribution at DL=1×10−4. However,
in other simulations (not reported) based on a higher ini-
tial concentration of smallest particles, the 6nal compact
layer consisted of the smallest particle species only.
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Fig. 6. Composition of the 6nal compact as function of dimensionless
location. The dashed line shows the lower limit of applicability of
the continuum equations.

Fig. 7. Average particle size as function of dimensionless location.

The data in Fig. 6 are summarized in Fig. 7 using an
average particle size given by

dav =
m∑
j=1

jdj: (15)

The inside and outside average sizes are now calculated
as 280 nm (DL=1×10−4) and 850 nm (DL=1) which
are in excellent agreement with the surface roughness
measured by Nijmeijer et al. (1998), 250 and 900 nm.

4.3. Permeance

Simulations as performed above may be of help in the
optimization of membrane supports by determining the
optimum powder types (size and size distribution of pow-
der types) and the concentrations of the di;erent powders
used (i.e., blending). For a support on which membranes
are coated on the inner surface, one would like to opti-

mize simultaneously the permeance of the support and the
smoothness of the inner surface. The total powder con-
centration tot results in a certain support thickness while
the powder blending results in the gradients of the aver-
age particle size and the packing factor. A full-:edged
optimization scheme would also incorporate a mechani-
cal treatment including strength, stress and safety factors
(Biesheuvel & Verweij, 1999).
In the following, we make a very simple 6rst-order

calculation in which we compare the permeance of the
graded tube discussed above with a tube consisting of a
monomodal particle size of 280 nm which is the aver-
age particle size of the inner surface of the graded tube.
We make this calculation to show how such calculations
can be performed; we will not perform an actual opti-
mization. As objective function, we choose the volumet-
ric permeance � of the system in m3 of permeate per
m2 of cross-sectional surface per Pa pressure di;erence
per second (m=Pa s). We make simulations for a constant
density (i.e., liquid) and a cylindrical geometry. This ge-
ometry requires that the cross-sectional surface is de6ned,
for which we choose the inner surface 2�rc;∞L with L
the length of a tube.
Note that because during subsequent sintering the sup-

port typically densi6es (increasing c) and the thickness
(rm − rc;∞) decreases, simulation results should ideally
be rescaled to the sintered thickness. However, in the
next calculation we assume that c remains constant dur-
ing sintering. This assumption is underpinned by exper-
iments in our laboratory (Nijmeijer et al., 1998) which
show that centrifuged tubes do not shrink much (∼ 5%)
during sintering at 1150◦C and 1 h (the outer diameter
rm decreases ∼0.5mm from rm = 10 mm in the compact
after centrifugation). The volumetric permeance follows
from Darcy’s law

Jvol =−k�−1�P; (16)

with k being the permeability (m2) and �P the pressure
gradient (Pa=m). In (16) only a pressure gradient is im-
plemented as driving force (Biesheuvel & Verweij, 1999)
and the equation only considers viscous :ow of a New-
tonian :uidum (Benes, Biesheuvel, & Verweij, 1999).
Combination of (16) with the equation of continuity

results for stationary :ow in

�=
!

2�rc;∞LSP
=

(
rc;∞�

∫ rm

rc;∞

1
rk

dr

)−1

: (17)

Here,! is the total volume :ow (m3=s) through the cylin-
der wall. We use a modi6ed Carman–Kozeny expression
for the permeability of a multicomponent structure—a
procedure discussed by Philipse (1997)—which results
in (see also Biesheuvel, 2000)

k =
(1− c)

3

1802
c


 m∑

j=1

fj

dj




−2

: (18)
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For simplicity, we assume a constant packing factor c

in the following calculation and we again refer to Yu and
Standish (1987) for a description of c as function of
the particle size distribution function. For an ideal mono-
component powder (one particle species of a single size)
a homogeneous compact is obtained for which combina-
tion of (17) and (18) results in

�=
(1− c)3d2

180rc;∞�2
c ln(rm=rc;∞)

: (19)

With c = 0:55, rc;∞ = 7:977 mm, � = 1 mPa s, rm =
10 mm and d= 280 nm, Eq. (19) results in � = 7:28×
10−11 m=Pa s. For our graded support, we numerically
solve for � using the data associated with Figs. 5 and 6:
for n values of r (with rl ranging from r1 = rc;∞ to rm)
we have values for the fractions fj (j from 1 to m) for
each particle size dj. In summation form,� is then given
by

�=
(1− c)3

180rc;∞�2
c




n∑
‘=1



(r‘ − r‘−1)

r‘


 m∑

j=1

fj

dj




2





−1

:

(20)

which gives (for m=12) as numerical result �=4:38×
10−10 m=Pa s. This value is 6 times higher than for a
monocomponent compact with d=280 nm which means
a signi6cant improvement in permeance while the inner
surface smoothness remains the same.

5. Discussion

The present work is an exploratory study. Several lines
of research can be thought of to re6ne and extend its
conclusions:

• Development of a mechanical treatment for graded
structures—analoguous to the one in Biesheuvel and
Verweij (1999) for materials without size or porosity
gradients—which takes account of the strength as a
function of the particle size distribution (and packing
factor). The weakest link must be identi6ed (i.e. the
radial coordinate of minimum strength=stress ratio).

• Full-:edged optimization based on simulations with
real powder blends (several powders, each with a size
distribution) including the mechanical aspects. In gen-
eral, we can expect that mixing a suspension of large
particles with a small amount of small particles will
result in a tube with a high permeance and a smooth
inner surface (Darcovich & Cloutier, 1999). Disadvan-
tages of the use of such a binary suspension are the
possibility of small particles trickling through the al-
ready formed matrix of larger particles, and fracture
during sintering due to the sintering stresses induced
at the abrupt particle size change in the compact near

the inner surface. These disadvantages may be over-
come by using a partly overlapping size distribution
of the small and the large particle fraction, while par-
ticle trickling is easily overcome because for trickling
to occur through a bed of touching spheres the particle
size ratio (of spheres) must at least be 6.5 :1.

• Better experimental methods based on an open, and
larger, centrifuge (see references in Biesheuvel et al.,
1998) allow continuous and in situ sampling.

• Centrifugation of a blend of two distinct powders will
give better validation of the transport models (com-
pared to the present validation based on a single pow-
der with a size distribution) because in that case the
di@cult problem of exactly determining the particle
concentration in the small-particle tail of the initial
powder sample is circumvented.

6. Conclusions

Centrifugal casting of particles with a size distri-
bution results in a structure with increasing average
particle size with radial coordinate. In contrast to more
outward layers, that contain all particle types, the 6-
nal deposition layer in some cases only consists of
the smallest particle type. The predicted average par-
ticle size of the inside and outside of a tube produced
from a submicron alumina powder agrees well with
surface roughness measurements from literature. The
formation of the compact is accompanied by a decrease
in average size of the suspended particles, which can
be monitored by sampling the suspension and ana-
lyzing the particle size distribution with a laser tech-
nique.
Simulations are in qualitative agreement with ex-

periments. Both show that the particle concentra-
tion decreases with time and decreases fastest for the
largest particles; therefore in time the average parti-
cle size in the suspension decreases. During the 6rst
moments of the experiment, the smallest particles in
the suspension have a settling velocity pointing in-
ward while the suspension concentration of these par-
ticles increases. Only after the largest particles have
moved out of suspension, the direction of velocity of
the small particles changes sign and they move out-
ward, so that their concentration starts to decrease as
well.
The permeance (volume :ux per unit pressure di;er-

ence) of these graded supports is much higher than of
supports consisting only of the small particles of the in-
ner surface. Thus, segregation e;ects in the centrifuga-
tion of a powder with a size distribution are advantageous
for the design of membrane systems in case subsequent
membranes will be deposited on the inner surface of the
tubular support.
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Notation

di particle size, m
DL dimensionless location in compact,

=(rc − rc;∞)(rm − rc;∞)−1, dimensionless
fi local fraction of particle type i in compact, di-

mensionless
hi particle hindrance function in suspension, dimen-

sionless
L tube length, m
m number of di;erent particle types
n hindrance factor power, dimensionless
P pressure, Pa
r tube coordinate (distance from heart of tube), m
rc location of suspension–compact front, m
rc;∞ coordinate of inner surface of 6nal compact, m
rm inner diameter of mold. Outside of compact, m
t time, s
Uc growth velocity of compact = velocity of

suspension–compact front, m=s
Uc; i velocity of particle species i within the compact

at rc, m=s
Uc;all velocity of all the particle species within the

compact at rc, m=s
Ui velocity of particle type i in suspension, m=s
Ui0 settling velocity at in6nite dilution, m=s

Greek letters

� compact porosity, dimensionless
� liquid Newtonian viscosity, Pa · s
� permeance, m=(Pa · s)
	0 density of liquid, kg=m3

	 density of particles, kg=m3

	s suspension density, kg=m3

c compact packing factor (unity minus porosity �),
dimensionless

c; i volumetric concentration of particle species i
within the compact at rc, dimensionless

i volumetric concentration of type i in suspension,
dimensionless

tot total volumetric concentration of particles in sus-
pension, dimensionless

! rotational velocity, rad=s
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